K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2018

\(\left(x+5\right)\left(x^2-5x+25\right)-\left(x+2\right)^3\)

\(=x^3+5^3-\left(x+2\right)^3=x^3+125-\left(x+2\right)^3\)

Tại x = -2 ta được: \(\left(-2\right)^3+125-\left(-2+2\right)^3=117\)

Vậy ....

14 tháng 7 2018

\(\left(x+5\right)\left(x^2-5x+25\right)-\left(x+2\right)^3=\left(x+5\right)^3-\left(x+2\right)^3.\) (*)

 Thay x=-2 vào biểu thức  (*)

 Ta có:\(\left(-2+5\right)^3-\left(-2+2\right)^3=27-0=27\)

14 tháng 2 2020

Câu 1 :

a, Ta có : \(x^2-10x=-25\)

=> \(x^2-10x+25=0\)

=> \(\left(x-5\right)^2=0\)

=> \(x-5=0\)

=> \(x=5\)

Vậy phương trình có nghiệm là x = 5 .

b, Ta có : \(5x\left(x-1\right)=x-1\)

=> \(5x\left(x-1\right)-x+1=0\)

=> \(5x\left(x-1\right)-\left(x-1\right)=0\)

=> \(\left(5x-1\right)\left(x-1\right)=0\)

=> \(\left[{}\begin{matrix}5x-1=0\\x-1=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=\frac{1}{5}\\x=1\end{matrix}\right.\)

Vậy phương trình có nghiệm là x = 1, x = \(\frac{1}{5}.\)

c, Ta có : \(2\left(x+5\right)-x^2-5x=0\)

=> \(2\left(x+5\right)-x\left(x+5\right)=0\)

=> \(\left(2-x\right)\left(x+5\right)=0\)

=> \(\left[{}\begin{matrix}2-x=0\\x+5=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)

Vậy phương trình có nghiệm là x = 2, x = -5 .

d, Ta có : \(x^2-2x-3=0\)

=> \(x^2-3x+x-3=0\)

=> \(x\left(x+1\right)-3\left(x+1\right)=0\)

=> \(\left(x-3\right)\left(x+1\right)=0\)

=> \(\left[{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)

Vậy phương trình có nghiệm là x = 3, x = -1 .

e, Ta có : \(2x^2+5x-3=0\)

=> \(2x^2+6x-x-3=0\)

=> \(x\left(2x-1\right)+3\left(2x-1\right)=0\)

=> \(\left(x+3\right)\left(2x-1\right)=0\)

=> \(\left[{}\begin{matrix}x+3=0\\2x-1=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=-3\\x=\frac{1}{2}\end{matrix}\right.\)

Vậy phương trình có nghiệm là x = -3, x = \(\frac{1}{2}.\)

14 tháng 2 2020

\(1.x^2-10x=-25\\ \Leftrightarrow x^2-10x+25=0\\\Leftrightarrow \left(x-5\right)^2=0\\\Leftrightarrow x-5=0\\ \Leftrightarrow x=5\)

Vậy nghiệm của phương trình trên là \(5\)

\(2.5x\left(x-1\right)=x-1\\ \Leftrightarrow\left(5x-1\right)\left(x-1\right)=0\\\Leftrightarrow \left[{}\begin{matrix}5x-1=0\\x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{1}{5}\\x=1\end{matrix}\right.\)

Vậy tập nghiệm của phương trình trên là \(S=\left\{1;\frac{1}{5}\right\}\)

25 tháng 6 2018

a/ \(\left(x+2\right)^2-9=0\)

<=> \(\left(x+2-3\right)\left(x+2+3\right)=0\)

<=> \(\left(x-1\right)\left(x+5\right)=0\)

<=> \(\orbr{\begin{cases}x-1=0\\x+5=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=1\\x=-5\end{cases}}\)

b/ \(x^2-2x+1=25\)

<=> \(\left(x-1\right)^2=25\)

<=> \(\orbr{\begin{cases}x-1=5\\x-1=-5\end{cases}}\)

<=> \(\orbr{\begin{cases}x=6\\x=-4\end{cases}}\)

25 tháng 6 2018

a) (x+2)2=0

 ==> x+2=0

 ==> x=0-2

==> x=-2

5 tháng 7 2017

Cứ thay vào rùi thính thui

5 tháng 7 2017

Mấy bài kia phá tung tóe rồi rút gọn hết sức xong thay x vào, làm câu c thôi nhé:

c) \(C=x^{14}-10x^{13}+10x^{12}-10x^{11}+...+10x^2-10x+10\)

riêng câu này ta thay x = 9 vào luôn, vậy ta có:

\(C=9^{14}-10\cdot9^{13}+10\cdot9^{12}-10\cdot9^{11}+...+10\cdot9^2-10\cdot9+10\)

\(=9^{14}-\left(9+1\right)\cdot9^{13}+\left(9+1\right)\cdot9^{12}-\left(9+1\right)\cdot9^{11}+...+\left(9+1\right)\cdot9^2-\left(9+1\right)\cdot9+10\)

\(=9^{14}-9^{14}-9^{13}+9^{13}+9^{12}-9^{12}-9^{11}+...+9^3+9^2-9^2-9+10\)

\(=-9+10\)

\(=1\)

tích mình đi

ai tích mình 

mình tích lại 

thanks

28 tháng 7 2018

\(x\left(x-3\right)+x-3=0\)

\(\left(x-3\right)\left(x+1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-3=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}}\)

KL:......................

\(x^3-5x=0\)

\(x\left(x^2-5\right)=0\)

Làm  tương tự như câu a

@_@ n...h..i......ề....u  q...u.....................á!

1 tháng 1 2018

\(a,5x\left(x-1\right)=x-1\)

\(\Rightarrow5x\left(x-1\right)-\left(x-1\right)=0\)

\(\Rightarrow\left(x-1\right)\left(5x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\5x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{5}\end{matrix}\right.\)

\(b,x^2-2x-3=0\)

\(\Rightarrow x^2-3x+x-3=0\)

\(\Rightarrow x\left(x-3\right)+\left(x-3\right)=0\)

\(\Rightarrow\left(x-3\right)\left(x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)

\(c,x^2-10x=-25\)

\(\Rightarrow x^2-10x+25=0\)

\(\Rightarrow\left(x-5\right)^2=0\)

\(\Rightarrow x-5=0\)

\(\Rightarrow x=5\)

\(d,2\left(x+5\right)-x^2-5x=0\)

\(\Rightarrow2\left(x+5\right)-x\left(x+5\right)=0\)

\(\Rightarrow\left(x+5\right)\left(2-x\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x+5=0\\2-x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)

\(e,2x^2+5x-3=0\)

\(\Rightarrow2x^2+6x-x-3=0\)

\(\Rightarrow2x\left(x+3\right)-\left(x+3\right)=0\)

\(\Rightarrow\left(x+3\right)\left(2x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x+3=0\\2x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-3\\x=\dfrac{1}{2}\end{matrix}\right.\)

1 tháng 1 2018

a) 5x( x - 1) = x - 1

=> 5x( x - 1) - ( x - 1) = 0

=> ( x - 1)( 5x - 1) = 0

=> x = 1 hoặc x = \(\dfrac{1}{5}\)

Vậy,....

b) x2 - 2x - 3 = 0

=> x2 + x - 3x - 3 = 0

=> x( x + 1) - 3( x + 1) = 0

=> ( x + 1)( x - 3) = 0

=> x = -1 hoặc x= 3

Vậy,....

c) x2 - 10x = -25

=> x2 - 10x + 25 = 0

=> ( x - 5)2 = 0

=> x = 5

Vậy.....

d) 2( x + 5) - x2 - 5x = 0

=> 2( x + 5) - x( x + 5) = 0

=> ( x + 5)( 2 - x) = 0

=> x = -5 hoặc x = 2

Vậy,....

e) 2x2 + 5x - 3 = 0

=> 2x2 - x + 6x - 3 = 0

=> x( 2x - 1) + 3( 2x - 1) = 0

=> ( 2x - 1)( x + 3) = 0

=> x = -3 hoặc x = \(\dfrac{1}{2}\)

Vậy,....