Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
⇔ \((\frac{3x}{x+3}+\frac{2}{x-5}):\frac{1}{\left(x-5\right)\left(x+3\right)}\)
ĐK : x \(\ne-3,\) x \(\ne5\)
\(\Leftrightarrow\left[\frac{3x\left(x-5\right)}{\left(x+3\right)\left(x-5\right)}+\frac{2\left(x+3\right)}{\left(x-5\right)\left(x+3\right)}\right]:\frac{1}{\left(x+3\right)\left(x-5\right)}\)
\(\Leftrightarrow\left[\frac{3x^2-15x+2x+6}{\left(\right)\left(\right)}\right]:\frac{1}{\left(\right)\left(\right)}\)
\(\Leftrightarrow\left[\frac{3x^2-13x+6}{\left(x-5\right)\left(x+3\right)}\right].\left(x+3\right)\left(x-5\right)\)
\(\Leftrightarrow3x^2-13x+6\)
\(a,\)\(x^5+x+1\)
\(=x^5-x^2+x^2+x+1\)
\(=x^2\left(x^3-1\right)+\left(x^2+x+1\right)\)
\(=x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)
\(b,\)\(x^5+x^4+1\)
\(=x^5+x^4+x^3-x^3+1\)
\(=x^3\left(x^2+x+1\right)-\left(x-1\right)\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^3-x+1\right)\)
a)\(\frac{2x-5}{x+5}\)=3 ĐKXĐ: x khác -5
=> 2x-5=3(x+5)
<=>2x-5=3x+15
<=>-x=20
<=>x =-20
b)\(\frac{x2-6}{x}\)=x+\(\frac{3}{2}\)ĐKXĐ\(x\ne0\)
=>2(x2-6)=2x2+3x
<=>2x2-12=2x2+3x
<=>-3x=12
<=>x=-4
a, \(=x^5+x^4+x^3-x^4-x^3-x^2+x^2+x+1\)
\(=x^3\left(x^2+x+1\right)-x^2\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)
ĐKXĐ: \(x>0\)
\(S=\left(\frac{1}{\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{x}+1}\right)\div\left(\frac{\sqrt{x}}{x+\sqrt{x}}\right)=\left(\frac{1}{\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{x}+1}\right)\left(\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}}\right)\)
\(=\left(\frac{1}{\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{x}+1}\right)\left(\sqrt{x}+1\right)=\frac{\sqrt{x}+1}{\sqrt{x}}+\sqrt{x}=\frac{x+\sqrt{x}+1}{\sqrt{x}}\)
x5 + x + 1 = x5 - x2 + x2 + x + 1
= x2(x3 - 1) + (x2 + x + 1)
= x2(x - 1)(x2 + x + 1) + (x2 + x + 1)
= (x2 + x + 1)[x2(x - 1) + 1]
= (x2 + x + 1)(x3 - x2 + 1)
Thank you