![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) (x - 2)(x + 3) = 6
=> x2 + 3x - 2x - 6 = 6
=> x2 + x - 6 - 6 = 0
=> x2 + x - 12 = 0
=> x2 + 4x - 3x - 12 = 0
=> x(x + 4) - 3(x + 4) = 0
=> (x - 3)(x + 4) = 0
=> \(\orbr{\begin{cases}x-3=0\\x+4=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=3\\x=-4\end{cases}}\)
b) (2x - 3)(x + 2) = 4
=> 2x2 + 4x - 3x - 6 = 4
=> 2x2 + x - 6 - 4 = 0
=> 2x2 + x - 10 = 0
=> 2x2 + 5x - 4x - 10 = 0
=> x(2x + 5) - 2(2x + 5) = 0
=> (x - 2)(2x + 5) = 0
=> \(\orbr{\begin{cases}x-2=0\\2x+5=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=2\\x=-\frac{5}{2}\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
1. \(x-8=3-2\left(x+4\right)\)
\(x-8=3-2x-8\)
\(3x=3\Rightarrow x=1\)
2. \(2\left(x+3\right)-3\left(x-1\right)=2\)
\(2x+6-3x+3=2\)
\(-x+9=2\Rightarrow x=7\)
3. \(4\left(x-5\right)-\left(3x-1\right)=x-19\)
\(4x-20-3x+1=x-19\)
\(0x=0\Rightarrow x=0\)
4. \(7-\left(x-2\right)=5\left(2x-3\right)\)
\(7-x+2=10x-15\)
\(-11x=-24\Rightarrow x=\frac{24}{11}\)
5. \(32-4\left(0,5y-5\right)=3y+2\)
\(32-2y+20=3y+2\)
\(-5y=-50\Rightarrow y=10\)
6. \(3\left(x-1\right)-x=2x-3\)
\(3x-3-x=2x-3\)
\(0x=0\Rightarrow x=0\)
Bài 2:
1. \(\frac{2-x}{3}=\frac{3-2x}{5}\)
\(\frac{\left(2-x\right)5}{15}-\frac{\left(3-2x\right)3}{15}=0\)
\(\frac{10-5x-9+6x}{15}=0\)
\(x+1=0\Rightarrow x=-1\)
2. \(\frac{3-4x}{4}=\frac{x+2}{5}\)
\(\frac{5\left(3-4x\right)}{20}-\frac{4\left(x+2\right)}{20}=0\)
\(\frac{15-20x-4x-8}{20}=0\)
\(7-24x=0\)
\(24x=7\Rightarrow x=\frac{7}{24}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1.
\((2x+1)(x^2+2)=0\Rightarrow \left[\begin{matrix} 2x+1=0\\ x^2+2=0\end{matrix}\right.\)
\(\Rightarrow \left[\begin{matrix} x=\frac{-1}{2}\\ x^2=-2< 0(\text{vô lý})\end{matrix}\right.\)
Vậy \(x=-\frac{1}{2}\)
2.\((x^2+4)(7x-3)=0\Rightarrow \left[\begin{matrix} x^2+4=0\\ 7x-3=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x^2=-4< 0(\text{vô lý})\\ x=\frac{3}{7}\end{matrix}\right.\)
Vậy \(x=\frac{3}{7}\)
3.
\((x-5)(3-2x)(3x+4)=0\)
\(\Rightarrow \left[\begin{matrix} x-5=0\\ 3-2x=0\\ 3x+4=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=5\\ x=\frac{3}{2}\\ x=-\frac{4}{3}\end{matrix}\right.\)
4.
\((x-2)(3x+5)=(2x-4)(x+1)\)
\(\Leftrightarrow (x-2)(3x+5)-(2x-4)(x+1)=0\)
\(\Leftrightarrow (x-2)(3x+5)-2(x-2)(x+1)=0\)
\(\Leftrightarrow (x-2)[(3x+5)-2(x+1)]=0\)
\(\Leftrightarrow (x-2)(x+3)=0\Rightarrow \left[\begin{matrix} x-2=0\\ x+3=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=2\\ x=-3\end{matrix}\right.\)
5.
\((2x+5)(x-4)=(x-5)(4-x)\)
\(\Leftrightarrow (2x+5)(x-4)-(x-5)(4-x)=0\)
\(\Leftrightarrow (2x+5)(x-4)+(x-5)(x-4)=0\)
\(\Leftrightarrow (x-4)[(2x+5)+(x-5)]=0\)
\(\Leftrightarrow (x-4).3x=0\)
\(\Rightarrow \left[\begin{matrix} x-4=0\\ 3x=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=4\\ x=0\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Tìm x, biết:
1) 2x ( x - 5) - x ( 2x - 4 ) = 15
<=> 2x2 - 10x - 2x2 + 4x - 15 = 0
<=> -6x - 15 = 0
<=> -6x = 15
<=> x = -15/6
2) ( x +1)( x + 2 ) - ( x + 4 ) ( x + 3 ) = 6
<=> x2 + 2x + x + 2 - x2 - 3x - 4x - 12 - 6 = 0
<=> -4x = -16
<=> x = 4
3) 4x2 - 4x + 5 - x ( 4x - 3) = 1 - 2x
<=> 4x2 - 4x + 5 - 4x2 + 3x - 1 + 2x = 0
<=> x + 4 = 0
<=> x = -4
4) ( x + 3 ) ( 2x + 1 ) - 2x2 = 4x - 5
<=> 2x2 + x + 6x + 3 - 2x2 - 4x + 5 = 0
<=> 3x + 8 = 0
<=> 3x = -8
<=> x = -8/3
5) -4 ( 2x - 8 ) + ( 2x - 1 )( 4x + 3 ) = 0
<=> - 8x + 32 + 8x2 + 6x - 4x - 3 = 0
.......
6) -3 . (x-2) + 4 . (2x-6) - 7 . (x-9)= 5 . (3-2)
<=> -3x + 6 + 8x - 24 - 7x + 63 - 5 = 0
<=> -2x + 40 = 0
<=> -2x = -40
<=> x = 20
Còn lại tương tự ....
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Ta có: \(\left(x+5\right)\left(2x-1\right)=\left(2x-3\right)\left(x+1\right)\)
\(\Leftrightarrow\left(x+5\right)\left(2x-1\right)-\left(2x-3\right)\left(x+1\right)=0\)
\(\Leftrightarrow2x^2-x+10x-5-\left(2x^2+2x-3x-3\right)=0\)
\(\Leftrightarrow2x^2+9x-5-2x^2+x+3=0\)
\(\Leftrightarrow10x-2=0\)
hay 10x=2
\(\Leftrightarrow x=\frac{1}{5}\)
Vậy: \(x=\frac{1}{5}\)
b) Ta có: \(\left(x+1\right)\left(x+9\right)=\left(x+3\right)\left(x+5\right)\)
\(\Leftrightarrow x^2+9x+x+9=x^2+5x+3x+15\)
\(\Leftrightarrow x^2+10x+9-x^2-8x-15=0\)
\(\Leftrightarrow2x-6=0\)
hay 2x=6
\(\Leftrightarrow x=3\)
Vậy: x=3
c) Ta có: \(\left(3x+5\right)\left(2x+1\right)=\left(6x-2\right)\left(x-3\right)\)
\(\Leftrightarrow6x^2+3x+10x+5=6x^2-18x-2x+6\)
\(\Leftrightarrow6x^2+13x+5=6x^2-20x+6\)
\(\Leftrightarrow6x^2+13x+5-6x^2+20x-6=0\)
\(\Leftrightarrow33x-1=0\)
\(\Leftrightarrow33x=1\)
hay \(x=\frac{1}{33}\)
Vậy: \(x=\frac{1}{33}\)
d) Ta có: \(\left(x-2\right)\left(3x+5\right)=\left(2x-4\right)\left(x+1\right)\)
\(\Leftrightarrow3x^2+5x-6x-10=2x^2+2x-4x-4\)
\(\Leftrightarrow3x^2-x-10=2x^2-2x-4\)
\(\Leftrightarrow3x^2-x-10-2x^2+2x+4=0\)
\(\Leftrightarrow x^2+x-6=0\)
\(\Leftrightarrow x^2+3x-2x-6=0\)
\(\Leftrightarrow x\left(x+3\right)-2\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\)
Vậy: \(x\in\left\{-3;2\right\}\)
đ) Ta có: \(9x^2-1=\left(3x+1\right)\left(2x-3\right)\)
\(\Leftrightarrow\left(3x-1\right)\left(3x+1\right)-\left(3x+1\right)\left(2x-3\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left[\left(3x-1\right)-\left(2x-3\right)\right]=0\)
\(\Leftrightarrow\left(3x+1\right)\left(3x-1-2x+3\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+1=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=-1\\x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\frac{1}{3}\\x=-2\end{matrix}\right.\)
Vậy: \(x\in\left\{-\frac{1}{3};-2\right\}\)
e) Ta có: \(\left(2x+5\right)\left(x-4\right)=\left(x-5\right)\left(4-x\right)\)
\(\Leftrightarrow\left(2x+5\right)\left(x-4\right)+\left(x-5\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(2x+5+x-5\right)=0\)
\(\Leftrightarrow\left(x-4\right)\cdot3x=0\)
Vì \(3\ne0\)
nên \(\left[{}\begin{matrix}x-4=0\\x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=0\end{matrix}\right.\)
Vậy: \(x\in\left\{0;4\right\}\)
a) $(x+5)(2x-1)=(2x-3)(x+1)$
$\Leftrightarrow 2x^2+9x-5=2x^2-x-3$
$\Leftrightarrow 10x=2\Rightarrow x=\frac{1}{5}$
b)
$(x+1)(x+9)=(x+3)(x+5)$
$\Leftrightarrow x^2+10x+9=x^2+8x+15$
$\Leftrightarrow 2x=6\Rightarrow x=3$
c)
$(3x+5)(2x+1)=(6x-2)(x-3)$
$\Leftrightarrow 6x^2+13x+5=6x^2-20x+6$
$\Leftrightarrow 33x=1\Rightarrow x=\frac{1}{33}$
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
a) 5(x-3)-4=2(x-1)
\(\Leftrightarrow5x-15-4=2x-2\)
\(\Leftrightarrow5x-19-2x+2=0\)
\(\Leftrightarrow3x-17=0\)
\(\Leftrightarrow3x=17\)
\(\Leftrightarrow x=\frac{17}{3}\)
Vậy: \(x=\frac{17}{3}\)
b) 5-(6-x)=4(3-2x)
\(\Leftrightarrow5-6+x=12-8x\)
\(\Leftrightarrow-1+x-12+8x=0\)
\(\Leftrightarrow-13+9x=0\)
\(\Leftrightarrow9x=13\)
\(\Leftrightarrow x=\frac{13}{9}\)
Vậy: \(x=\frac{13}{9}\)
c) (3x+5)(2x+1)=(6x-2)(x-3)
\(\Leftrightarrow6x^2+3x+10x+5=6x^2-18x-2x+6\)
\(\Leftrightarrow6x^2+13x+5=6x^2-20x+6\)
\(\Leftrightarrow6x^2+13x+5-6x^2+20x-6=0\)
\(\Leftrightarrow33x-1=0\)
\(\Leftrightarrow33x=1\)
\(\Leftrightarrow x=\frac{1}{33}\)
Vậy: \(x=\frac{1}{33}\)
d) \(\left(x+2\right)^2+2\left(x-4\right)=\left(x-4\right)\left(x-2\right)\)
\(\Leftrightarrow x^2+4x+4+2x-8=x^2-2x-4x+8\)
\(\Leftrightarrow x^2+6x-4=x^2-6x+8\)
\(\Leftrightarrow x^2+6x-4-x^2+6x-8=0\)
\(\Leftrightarrow12x-12=0\)
\(\Leftrightarrow x=1\)
Vậy:x=1
Bài 2:
a)\(\frac{x}{3}-\frac{5x}{6}-\frac{15x}{12}=\frac{x}{4}-5\)
\(\Leftrightarrow\frac{x}{3}-\frac{5x}{6}-\frac{5x}{4}-\frac{x}{4}+5=0\)
\(\Leftrightarrow\frac{4x}{12}-\frac{10x}{12}-\frac{15x}{12}-\frac{3x}{12}+\frac{60}{12}=0\)
\(\Leftrightarrow4x-10x-15x-3x+60=0\)
\(\Leftrightarrow-24x+60=0\)
\(\Leftrightarrow-24x=-60\)
\(\Leftrightarrow x=\frac{5}{2}\)
Vậy: \(x=\frac{5}{2}\)
b) \(\frac{8x-3}{4}-\frac{3x-2}{2}=\frac{2x-1}{2}+\frac{x+3}{4}\)
\(\Leftrightarrow\frac{8x-3}{4}-\frac{3x-2}{2}-\frac{2x-1}{2}-\frac{x+3}{4}=0\)
\(\Leftrightarrow\frac{8x-3}{4}-\frac{2\left(3x-2\right)}{4}-\frac{2\left(2x-1\right)}{4}-\frac{x+3}{4}=0\)
\(\Leftrightarrow8x-3-2\left(3x-2\right)-2\left(2x-1\right)-\left(x+3\right)=0\)
\(\Leftrightarrow8x-3-6x+4-4x+2-x-3=0\)
\(\Leftrightarrow-3x=0\)
\(\Leftrightarrow x=0\)
Vậy: x=0
c) \(\frac{x-1}{2}-\frac{x+1}{15}-\frac{2x-13}{6}=0\)
\(\Leftrightarrow\frac{15\left(x-1\right)}{30}-\frac{2\left(x+1\right)}{30}-\frac{5\left(2x-13\right)}{30}=0\)
\(\Leftrightarrow15\left(x-1\right)-2\left(x+1\right)-5\left(2x-13\right)=0\)
\(\Leftrightarrow15x-15-2x-2-10x+65=0\)
\(\Leftrightarrow3x+48=0\)
\(\Leftrightarrow3x=-48\)
\(\Leftrightarrow x=-16\)
Vậy: x=-16
d) \(\frac{3\left(3-x\right)}{8}+\frac{2\left(5-x\right)}{3}=\frac{1-x}{2}-2\)
\(\Leftrightarrow\frac{3\left(3-x\right)}{8}+\frac{2\left(5-x\right)}{3}-\frac{1-x}{2}+2=0\)
\(\Leftrightarrow\frac{9\left(3-x\right)}{24}+\frac{16\left(5-x\right)}{24}-\frac{12\left(1-x\right)}{24}+\frac{48}{24}=0\)
\(\Leftrightarrow9\left(3-x\right)+16\left(5-x\right)-12\left(1-x\right)+48=0\)
\(\Leftrightarrow27-9x+80-16x-12+12x+48=0\)
\(\Leftrightarrow-13x+143=0\)
\(\Leftrightarrow-13x=-143\)
\(\Leftrightarrow x=11\)
Vậy: x=11
e) \(\frac{3\left(5x-2\right)}{4}-2=\frac{7x}{3}-5\left(x-7\right)\)
\(\Leftrightarrow\frac{3\left(5x-2\right)}{4}-2-\frac{7x}{3}+5\left(x-7\right)=0\)
\(\Leftrightarrow\frac{9\left(5x-2\right)}{12}-\frac{24}{12}-\frac{28x}{12}+\frac{60\left(x-7\right)}{12}=0\)
\(\Leftrightarrow9\left(5x-2\right)-24-28x+60\left(x-7\right)=0\)
\(\Leftrightarrow45x-18-24-28x+60x-420=0\)
\(\Leftrightarrow77x-462=0\)
\(\Leftrightarrow77x=462\)
\(\Leftrightarrow x=6\)
Vậy:x=6
Bài 3:
a) \(\left(5x-4\right)\left(4x+6\right)=0\)
\(\Leftrightarrow\left(5x-4\right)\cdot2\cdot\left(2x+3\right)=0\)
Vì \(2\ne0\)
nên \(\left[{}\begin{matrix}5x-4=0\\2x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5x=4\\2x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{4}{5}\\x=\frac{-3}{2}\end{matrix}\right.\)
Vậy: \(x\in\left\{\frac{4}{5};-\frac{3}{2}\right\}\)
b) \(\left(x-5\right)\left(3-2x\right)\left(3x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\3-2x=0\\3x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\2x=3\\3x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\frac{3}{2}\\x=\frac{-4}{3}\end{matrix}\right.\)
Vậy: \(x\in\left\{5;\frac{3}{2};\frac{-4}{3}\right\}\)
c) \(\left(2x+1\right)\left(x^2+2\right)=0\)
Ta có: \(\left(2x+1\right)\left(x^2+2\right)=0\)(1)
Ta có: \(x^2\ge0\forall x\)
\(\Rightarrow x^2+2\ge2\ne0\forall x\)(2)
Từ (1) và (2) suy ra:
\(2x+1=0\)
\(\Leftrightarrow2x=-1\)
\(\Leftrightarrow x=\frac{-1}{2}\)
Vậy: \(x=\frac{-1}{2}\)
d) \(\left(8x-4\right)\left(x^2+2x+2\right)=0\)
\(\Leftrightarrow4\left(2x-1\right)\left(x^2+2x+2\right)=0\)
Ta có: \(x^2+2x+2=x^2+2x+1+1=\left(x+1\right)^2+1\)
Ta lại có \(\left(x+1\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+1\right)^2+1\ge1\ne0\forall x\)(3)
Ta có: \(4\ne0\)(4)
Từ (3) và (4) suy ra
2x-1=0
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy: \(x=\frac{1}{2}\)
Bài 4:
a) \(\left(x-2\right)\left(2x+3\right)=\left(x-1\right)\left(x-2\right)\)
\(\Leftrightarrow2x^2+3x-4x-6=x^2-2x-x+2\)
\(\Leftrightarrow2x^2-x-6=x^2-3x+2\)
\(\Leftrightarrow2x^2-x-6-x^2+3x-2=0\)
\(\Leftrightarrow x^2+2x-8=0\)
\(\Leftrightarrow x^2+2x+1-9=0\)
\(\Leftrightarrow\left(x+1\right)^2-3^2=0\)
\(\Leftrightarrow\left(x+1-3\right)\left(x+1+3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-4\end{matrix}\right.\)
Vậy: \(x\in\left\{2;-4\right\}\)
b) \(\left(2x+5\right)\left(x-4\right)=\left(x-5\right)\left(4-x\right)\)
\(\Leftrightarrow\left(2x+5\right)\left(x-4\right)-\left(x-5\right)\left(4-x\right)=0\)
\(\Leftrightarrow\left(2x+5\right)\left(x-4\right)+\left(x-5\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(2x+5+x-5\right)=0\)
\(\Leftrightarrow\left(x-4\right)\cdot3x=0\)
Vì \(3\ne0\)
nên \(\left[{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
Vậy: \(x\in\left\{0;4\right\}\)
c) \(9x^2-1=\left(3x+1\right)\left(2x-3\right)\)
\(\Leftrightarrow\left(3x-1\right)\left(3x+1\right)-\left(3x+1\right)\left(2x-3\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left[\left(3x-1\right)-\left(2x-3\right)\right]=0\)
\(\Leftrightarrow\left(3x+1\right)\left(3x-1-2x+3\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+1=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=-1\\x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-1}{3}\\x=-2\end{matrix}\right.\)
Vậy: \(x\in\left\{-\frac{1}{3};-2\right\}\)
d) \(\left(x+2\right)^2=9\left(x^2-4x+4\right)\)
\(\Leftrightarrow x^2+4x+4-9\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow x^2+4x+4-9x^2+36x-36=0\)
\(\Leftrightarrow-8x^2+40x-32=0\)
\(\Leftrightarrow-\left(8x^2-40x+32\right)=0\)
\(\Leftrightarrow-8\left(x^2-5x+4\right)=0\)
Vì \(-8\ne0\)
nên \(x^2-5x+4=0\)
\(\Leftrightarrow x^2-x-4x+4=0\)
\(\Leftrightarrow x\left(x-1\right)-4\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\end{matrix}\right.\)
Vậy: \(x\in\left\{1;4\right\}\)
e) \(4\left(2x+7\right)^2-9\left(x+3\right)^2=0\)
\(\Leftrightarrow4\left(4x^2+28x+49\right)-9\left(x^2+6x+9\right)=0\)
\(\Leftrightarrow16x^2+112x+196-9x^2-54x-81=0\)
\(\Leftrightarrow7x^2+58x+115=0\)
\(\Leftrightarrow7x^2+23x+35x+115=0\)
\(\Leftrightarrow x\left(7x+23\right)+5\left(7x+23\right)=0\)
\(\Leftrightarrow\left(7x+23\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}7x+23=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}7x=-23\\x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-23}{7}\\x=-5\end{matrix}\right.\)
Vậy: \(x\in\left\{\frac{-23}{7};-5\right\}\)
Bài 5:
a) \(\left(9x^2-4\right)\left(x+1\right)=\left(3x+2\right)\left(x^2-1\right)\)
\(\Leftrightarrow\left(9x^2-4\right)\left(x+1\right)-\left(3x+2\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(3x-2\right)\left(3x+2\right)\left(x+1\right)-\left(3x+2\right)\left(x+1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(3x+2\right)\left(x+1\right)\left[\left(3x-2\right)-\left(x-1\right)\right]=0\)
\(\Leftrightarrow\left(3x+2\right)\left(x+1\right)\left(3x-2-x+1\right)=0\)
\(\Leftrightarrow\left(3x+2\right)\left(x+1\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+2=0\\x+1=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=-2\\x=-1\\2x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-2}{3}\\x=-1\\x=\frac{1}{2}\end{matrix}\right.\)
Vậy: \(x\in\left\{-\frac{2}{3};-1;\frac{1}{2}\right\}\)
b) \(\left(x-1\right)^2-1+x^2=\left(1-x\right)\left(x+3\right)\)
\(\Leftrightarrow x^2-2x+1-1+x^2=x+3-x^2-3x\)
\(\Leftrightarrow2x^2-2x=-x^2-2x+3\)
\(\Leftrightarrow2x^2-2x+x^2+2x-3=0\)
\(\Leftrightarrow3x^2-3=0\)
\(\Leftrightarrow3\left(x^2-1\right)=0\)
\(\Leftrightarrow3\left(x-1\right)\left(x+1\right)=0\)
Vì \(3\ne0\)
nên \(\left[{}\begin{matrix}x-1=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
Vậy: \(x\in\left\{1;-1\right\}\)
c) \(x^4+x^3+x+1=0\)
\(\Leftrightarrow x^3\left(x+1\right)+\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^3+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+1\right)\left(x^2-x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)^2\cdot\left(x^2-x+1\right)=0\)(5)
Ta có: \(x^2-x+1=x^2-2\cdot x\cdot\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
Ta lại có: \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\ne0\forall x\)(6)
Từ (5) và (6) suy ra
\(\left(x+1\right)^2=0\)
\(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
Vậy: x=-1