K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2016

x/3 = y/4 ; z/5= y/7 và 2x+3y-z=106

Áp dụng tính chất dãy tỷ số bằng nhau:

\(\frac{x}{5}=\frac{y}{4}=\frac{z}{7}=\frac{2y}{8}=\frac{x+2y+z}{5+8+7}=\frac{40}{20}=2\)

Ta có:

\(\frac{x}{5}=2\Leftrightarrow x=10\)

\(\frac{y}{4}=2\Leftrightarrow y=8\)

\(\frac{z}{7}=2\Leftrightarrow z=14\)

Vậy ...

16 tháng 10 2020

a) Ta có : \(\frac{x}{y}=\frac{4}{9}\Rightarrow\frac{x}{4}=\frac{y}{9}\Rightarrow\frac{3x}{12}=\frac{2y}{18}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{3x}{12}=\frac{2y}{18}=\frac{3x-2y}{12-18}=\frac{12}{-6}=-2\)

=> \(\hept{\begin{cases}x=\left(-2\right)\cdot4=-8\\y=\left(-2\right)\cdot9=-18\end{cases}}\)

b) Ta có : \(\frac{y}{4}=\frac{x}{-3}\Rightarrow\frac{x}{-3}=\frac{y}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{-3}=\frac{y}{4}=\frac{x-y}{\left(-3\right)-4}=\frac{7}{-7}=-1\)

=> \(\hept{\begin{cases}x=\left(-1\right)\cdot\left(-3\right)=3\\y=\left(-1\right)\cdot4=-4\end{cases}}\)

c) Ta có : \(x=-2y\Rightarrow\frac{x}{-2}=\frac{y}{1}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{-2}=\frac{y}{1}=\frac{x-y}{-2-1}=\frac{-3}{-3}=1\)

=> \(\hept{\begin{cases}x=1\cdot\left(-2\right)=-2\\y=1\end{cases}}\)

d) Ta có : \(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{2x}{4}=\frac{y}{5}=\frac{z}{7}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{2x}{4}=\frac{y}{5}=\frac{z}{7}=\frac{2x+y-z}{4+5-7}=\frac{2}{2}=1\)

=> \(\hept{\begin{cases}x=1\cdot2=2\\y=1\cdot5=5\\z=1\cdot7=7\end{cases}}\)

10 tháng 7 2018

\(\frac{x}{5}=\frac{y}{4}=\frac{z}{7}\) 

\(\Leftrightarrow\)\(\frac{x}{5}=\frac{2y}{8}=\frac{a}{7}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x}{5}=\frac{2y}{8}=\frac{z}{7}=\frac{x+2y+z}{5+8+7}=\frac{40}{20}=2\)

Do đó : 

\(\frac{x}{5}=2\)\(\Rightarrow\)\(x=2.5=10\)

\(\frac{y}{4}=2\)\(\Rightarrow\)\(y=2.4=8\)

\(\frac{z}{7}=2\)\(\Rightarrow\)\(z=2.7=14\)

Vậy \(x=10\)\(;\)\(y=8\) và \(z=14\)

Chúc bạn học tốt ~ 

10 tháng 7 2018

Có \(\frac{x}{5}=\frac{y}{4}=\frac{z}{7}\left(x+2y+z=40\right)\)

\(\Leftrightarrow\frac{x}{5}=\frac{2y}{8}=\frac{z}{7}\)

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{x}{5}=\frac{2y}{8}=\frac{a}{7}=\frac{x+2y+z}{5+8+7}=\frac{40}{20}=2\)

\(\Rightarrow\frac{x}{5}=2\Rightarrow x=10\)

\(\frac{2y}{8}=2\Rightarrow2y=16\Rightarrow y=8\)

\(\frac{z}{7}=2\Rightarrow z=14\)

Vậy a = 10 ; y = 8 ; z = 14

26 tháng 11 2021

Answer:

1.

\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}\)

\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{20}=\frac{z}{28}\)

\(\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)

\(\Rightarrow2\frac{x}{30}=3\frac{y}{60}=\frac{z}{28}\)

Áp dụng tính chất của dãy tỷ số bằng nhau

\(2\frac{x}{30}+3\frac{y}{60}+\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=3\)

\(\Rightarrow2\frac{x}{30}=3\Rightarrow x=45\)

\(\Rightarrow3\frac{y}{60}=3\Rightarrow y=60\)

\(\Rightarrow\frac{z}{28}=3\Rightarrow z=84\)

2.

Ta đặt: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\)

\(\Rightarrow x=2k\)

\(\Rightarrow y=3k\)

\(\Rightarrow z=4k\)

\(\Rightarrow xyz=2k.3k.4k=24.k^3=648\)

\(\Rightarrow k^3=27\Rightarrow k=3\)

\(\Rightarrow\frac{x}{2}=3\Rightarrow x=6\)

\(\Rightarrow\frac{y}{3}=3\Rightarrow y=9\)

\(\Rightarrow\frac{z}{4}=3\Rightarrow z=12\)

3.

\(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)

\(4x=2z\Rightarrow\frac{x}{2}=\frac{z}{4}\)

\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\) và \(x+y+z=27\)

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{2+3+4}=3\)

\(\Rightarrow\frac{x}{2}=3\Rightarrow x=6\)

\(\Rightarrow\frac{y}{3}=3\Rightarrow y=9\)

\(\Rightarrow\frac{z}{4}=3\Rightarrow z=12\)

18 tháng 7 2017

ta có : \(\frac{x}{y}=\frac{6}{9}\)

\(\Rightarrow\frac{x}{6}=\frac{y}{9}\)\(=\frac{x-y}{6-9}\)\(=\frac{30}{-3}\)\(-10\)

\(\frac{x}{6}=-10\Rightarrow x=-60\)

\(\frac{y}{9}=-10\Rightarrow y=-90\)

b) \(\frac{x}{5}=\frac{y}{4}=\frac{z}{7}=\frac{x}{5}=\frac{2y}{8}=\frac{z}{7}=\frac{x+2y+z}{5+8+7}=\frac{40}{20}=2\)

\(\frac{x}{5}=2\Rightarrow x=10\)

\(\frac{y}{4}=2\Rightarrow y=8\)

\(\frac{z}{7}=2\Rightarrow z=14\)

C) ta có \(\frac{x}{3}=\frac{y}{4}\)

\(\Rightarrow\frac{x}{3}.\frac{1}{7}=\frac{y}{4}.\frac{1}{7}\)

\(\frac{x}{21}=\frac{y}{28}\)

ta lại có \(\frac{z}{5}=\frac{y}{7}\)

\(\Rightarrow\frac{z}{5}.\frac{1}{4}=\frac{y}{7}.\frac{1}{4}\)

\(\frac{z}{20}=\frac{y}{28}\)

\(\Rightarrow\frac{z}{20}=\frac{y}{28}=\frac{x}{21}\)\(=\frac{2x}{42}=\frac{3y}{84}=\frac{z}{20}=\frac{2x+3y-z}{42+84-20}=\frac{106}{106}=1\)

\(\frac{x}{21}=1\Rightarrow x=21\)

\(\frac{y}{28}=1\Rightarrow y=28\)

\(\frac{z}{20}=1\Rightarrow z=20\)

chúc bn hc tốt ^-^

10 tháng 8 2020

a/ Ta có :

\(\frac{x}{y}=-\frac{6}{9}=-\frac{2}{3}\)

\(\Leftrightarrow\frac{x}{-2}=\frac{y}{3}\)

Theo tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{-2}=\frac{y}{3}=\frac{x-y}{-2-3}=\frac{30}{-5}=-6\)

\(\Leftrightarrow\left\{{}\begin{matrix}\frac{x}{-2}=-6\\\frac{y}{3}=-6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=12\\y=-18\end{matrix}\right.\)

Vậy.....

b/ Ta có :

\(\frac{x}{5}=\frac{y}{4}=\frac{z}{7}=\frac{2y}{8}\)

Theo tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{5}=\frac{y}{4}=\frac{z}{7}=\frac{2y}{8}=\frac{x+2y+z}{5+8+7}=\frac{40}{20}=2\)

\(\Leftrightarrow\left\{{}\begin{matrix}\frac{x}{5}=2\\\frac{y}{4}=2\\\frac{z}{7}=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=10\\y=8\\z=14\end{matrix}\right.\)

Vậy....

c/ Ta có :

+) \(\frac{x}{3}=\frac{y}{4}\Leftrightarrow\frac{x}{21}=\frac{y}{28}\left(1\right)\)

+) \(\frac{y}{7}=\frac{z}{5}\Leftrightarrow\frac{y}{28}=\frac{z}{20}\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrow\frac{x}{21}=\frac{y}{28}=\frac{z}{20}=\frac{2x}{42}=\frac{3y}{84}\)

Theo tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{21}=\frac{y}{28}=\frac{z}{20}=\frac{2x}{42}=\frac{3y}{84}=\frac{2x+3y-z}{42+84-20}=\frac{106}{106}=1\)

\(\Leftrightarrow\left\{{}\begin{matrix}\frac{x}{21}=1\\\frac{y}{28}=1\\\frac{z}{20}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=21\\y=28\\z=20\end{matrix}\right.\)

Vậy...