Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có : \(\frac{x}{y}=\frac{4}{9}\Rightarrow\frac{x}{4}=\frac{y}{9}\Rightarrow\frac{3x}{12}=\frac{2y}{18}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{3x}{12}=\frac{2y}{18}=\frac{3x-2y}{12-18}=\frac{12}{-6}=-2\)
=> \(\hept{\begin{cases}x=\left(-2\right)\cdot4=-8\\y=\left(-2\right)\cdot9=-18\end{cases}}\)
b) Ta có : \(\frac{y}{4}=\frac{x}{-3}\Rightarrow\frac{x}{-3}=\frac{y}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{-3}=\frac{y}{4}=\frac{x-y}{\left(-3\right)-4}=\frac{7}{-7}=-1\)
=> \(\hept{\begin{cases}x=\left(-1\right)\cdot\left(-3\right)=3\\y=\left(-1\right)\cdot4=-4\end{cases}}\)
c) Ta có : \(x=-2y\Rightarrow\frac{x}{-2}=\frac{y}{1}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{-2}=\frac{y}{1}=\frac{x-y}{-2-1}=\frac{-3}{-3}=1\)
=> \(\hept{\begin{cases}x=1\cdot\left(-2\right)=-2\\y=1\end{cases}}\)
d) Ta có : \(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{2x}{4}=\frac{y}{5}=\frac{z}{7}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{4}=\frac{y}{5}=\frac{z}{7}=\frac{2x+y-z}{4+5-7}=\frac{2}{2}=1\)
=> \(\hept{\begin{cases}x=1\cdot2=2\\y=1\cdot5=5\\z=1\cdot7=7\end{cases}}\)
\(\frac{x}{5}=\frac{y}{4}=\frac{z}{7}\)
\(\Leftrightarrow\)\(\frac{x}{5}=\frac{2y}{8}=\frac{a}{7}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{5}=\frac{2y}{8}=\frac{z}{7}=\frac{x+2y+z}{5+8+7}=\frac{40}{20}=2\)
Do đó :
\(\frac{x}{5}=2\)\(\Rightarrow\)\(x=2.5=10\)
\(\frac{y}{4}=2\)\(\Rightarrow\)\(y=2.4=8\)
\(\frac{z}{7}=2\)\(\Rightarrow\)\(z=2.7=14\)
Vậy \(x=10\)\(;\)\(y=8\) và \(z=14\)
Chúc bạn học tốt ~
Có \(\frac{x}{5}=\frac{y}{4}=\frac{z}{7}\left(x+2y+z=40\right)\)
\(\Leftrightarrow\frac{x}{5}=\frac{2y}{8}=\frac{z}{7}\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x}{5}=\frac{2y}{8}=\frac{a}{7}=\frac{x+2y+z}{5+8+7}=\frac{40}{20}=2\)
\(\Rightarrow\frac{x}{5}=2\Rightarrow x=10\)
\(\frac{2y}{8}=2\Rightarrow2y=16\Rightarrow y=8\)
\(\frac{z}{7}=2\Rightarrow z=14\)
Vậy a = 10 ; y = 8 ; z = 14
Answer:
1.
\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}\)
\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{20}=\frac{z}{28}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)
\(\Rightarrow2\frac{x}{30}=3\frac{y}{60}=\frac{z}{28}\)
Áp dụng tính chất của dãy tỷ số bằng nhau
\(2\frac{x}{30}+3\frac{y}{60}+\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=3\)
\(\Rightarrow2\frac{x}{30}=3\Rightarrow x=45\)
\(\Rightarrow3\frac{y}{60}=3\Rightarrow y=60\)
\(\Rightarrow\frac{z}{28}=3\Rightarrow z=84\)
2.
Ta đặt: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\)
\(\Rightarrow x=2k\)
\(\Rightarrow y=3k\)
\(\Rightarrow z=4k\)
\(\Rightarrow xyz=2k.3k.4k=24.k^3=648\)
\(\Rightarrow k^3=27\Rightarrow k=3\)
\(\Rightarrow\frac{x}{2}=3\Rightarrow x=6\)
\(\Rightarrow\frac{y}{3}=3\Rightarrow y=9\)
\(\Rightarrow\frac{z}{4}=3\Rightarrow z=12\)
3.
\(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)
\(4x=2z\Rightarrow\frac{x}{2}=\frac{z}{4}\)
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\) và \(x+y+z=27\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{2+3+4}=3\)
\(\Rightarrow\frac{x}{2}=3\Rightarrow x=6\)
\(\Rightarrow\frac{y}{3}=3\Rightarrow y=9\)
\(\Rightarrow\frac{z}{4}=3\Rightarrow z=12\)
ta có : \(\frac{x}{y}=\frac{6}{9}\)
\(\Rightarrow\frac{x}{6}=\frac{y}{9}\)\(=\frac{x-y}{6-9}\)\(=\frac{30}{-3}\)= \(-10\)
\(\frac{x}{6}=-10\Rightarrow x=-60\)
\(\frac{y}{9}=-10\Rightarrow y=-90\)
b) \(\frac{x}{5}=\frac{y}{4}=\frac{z}{7}=\frac{x}{5}=\frac{2y}{8}=\frac{z}{7}=\frac{x+2y+z}{5+8+7}=\frac{40}{20}=2\)
\(\frac{x}{5}=2\Rightarrow x=10\)
\(\frac{y}{4}=2\Rightarrow y=8\)
\(\frac{z}{7}=2\Rightarrow z=14\)
C) ta có \(\frac{x}{3}=\frac{y}{4}\)
\(\Rightarrow\frac{x}{3}.\frac{1}{7}=\frac{y}{4}.\frac{1}{7}\)
\(\frac{x}{21}=\frac{y}{28}\)
ta lại có \(\frac{z}{5}=\frac{y}{7}\)
\(\Rightarrow\frac{z}{5}.\frac{1}{4}=\frac{y}{7}.\frac{1}{4}\)
\(\frac{z}{20}=\frac{y}{28}\)
\(\Rightarrow\frac{z}{20}=\frac{y}{28}=\frac{x}{21}\)\(=\frac{2x}{42}=\frac{3y}{84}=\frac{z}{20}=\frac{2x+3y-z}{42+84-20}=\frac{106}{106}=1\)
\(\frac{x}{21}=1\Rightarrow x=21\)
\(\frac{y}{28}=1\Rightarrow y=28\)
\(\frac{z}{20}=1\Rightarrow z=20\)
chúc bn hc tốt ^-^
a/ Ta có :
\(\frac{x}{y}=-\frac{6}{9}=-\frac{2}{3}\)
\(\Leftrightarrow\frac{x}{-2}=\frac{y}{3}\)
Theo tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{-2}=\frac{y}{3}=\frac{x-y}{-2-3}=\frac{30}{-5}=-6\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{x}{-2}=-6\\\frac{y}{3}=-6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=12\\y=-18\end{matrix}\right.\)
Vậy.....
b/ Ta có :
\(\frac{x}{5}=\frac{y}{4}=\frac{z}{7}=\frac{2y}{8}\)
Theo tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{5}=\frac{y}{4}=\frac{z}{7}=\frac{2y}{8}=\frac{x+2y+z}{5+8+7}=\frac{40}{20}=2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{x}{5}=2\\\frac{y}{4}=2\\\frac{z}{7}=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=10\\y=8\\z=14\end{matrix}\right.\)
Vậy....
c/ Ta có :
+) \(\frac{x}{3}=\frac{y}{4}\Leftrightarrow\frac{x}{21}=\frac{y}{28}\left(1\right)\)
+) \(\frac{y}{7}=\frac{z}{5}\Leftrightarrow\frac{y}{28}=\frac{z}{20}\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrow\frac{x}{21}=\frac{y}{28}=\frac{z}{20}=\frac{2x}{42}=\frac{3y}{84}\)
Theo tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{21}=\frac{y}{28}=\frac{z}{20}=\frac{2x}{42}=\frac{3y}{84}=\frac{2x+3y-z}{42+84-20}=\frac{106}{106}=1\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{x}{21}=1\\\frac{y}{28}=1\\\frac{z}{20}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=21\\y=28\\z=20\end{matrix}\right.\)
Vậy...
x/3 = y/4 ; z/5= y/7 và 2x+3y-z=106
Áp dụng tính chất dãy tỷ số bằng nhau:
\(\frac{x}{5}=\frac{y}{4}=\frac{z}{7}=\frac{2y}{8}=\frac{x+2y+z}{5+8+7}=\frac{40}{20}=2\)
Ta có:
\(\frac{x}{5}=2\Leftrightarrow x=10\)
\(\frac{y}{4}=2\Leftrightarrow y=8\)
\(\frac{z}{7}=2\Leftrightarrow z=14\)
Vậy ...