\(x^4+x^3-3x^2-x+2\)         chia cho      \(x^2-1\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 12 2018

tao chx làm , yên tâm ik - sẽ ko ai tl m âu

7 tháng 12 2018

a) \(\left(27x^2+a\right):\left(3x+2\right)\) được thương là 9x -16 và dư a + 12

Để \(\left(27x^2+a\right)⋮\left(3x+2\right)\) thì số dư phải bằng 0

=> a + 12 = 0

=> a = -12

Bài b và c tham khảo cách làm tương tự ở đây

Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath

17 tháng 7 2018

Tham khảo nha bạn : http://lazi.vn/edu/exercise/xac-dinh-cac-hang-so-a-va-b-sao-cho-x4-ax-b-chia-het-cho-x2-4-x4-ax-bx-1-chia-het-cho-x2-1

23 tháng 12 2018

1 , 

\(b,x^2-2x=0\)

\(\Rightarrow x\left(x-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x-2=0\Rightarrow x=2\end{cases}}\)

KL :..

\(2,x^2-y^2=\left(x+y\right)\left(x-y\right)\)

\(b,4x^2-4x+1=\left(2x\right)^2-2.2x+1\)

\(=\left(2x-1\right)^2\)

14 tháng 2 2020

a.=\(\frac{7x+2}{3xy^2}.\frac{x^2y}{14x+4}\)

=\(\frac{7x+2}{3y}.\frac{x^2y}{2\left(7x+2\right)}\)

=\(\frac{1}{3y}.\frac{x}{2}\)

=\(\frac{x}{6y}\)

b.=\(\frac{8xy}{3x-1}.\frac{5-15x}{12xy^3}\)

=\(\frac{2}{3x-1}.\frac{-15x+5}{3y^2}\)

=\(\frac{2}{3x-1}.\frac{-5\left(3x-1\right)}{3y^2}\)

=\(\frac{-10}{3y^2}\)

c.=\(\frac{3\left(x^3+1\right)}{x-1}.\frac{1}{x^2-x+1}\)

=\(\frac{3\left(x+1\right).\left(x^2-x+1\right)}{x-1}.\frac{1}{x^2-x+1}\)

=\(\frac{3x+3}{x-1}\)

d.=\(\frac{4\left(x+3\right)}{.\left(3x-1\right)}.\frac{1-3x}{x^2+3x}\)

=\(\frac{4\left(x+3\right)}{x.\left(3x-1\right)}.\frac{-\left(3x-1\right)}{x\left(x+3\right)}\)

=\(\frac{-4}{x^2}\)

e.=\(\frac{2\left(2x+3y\right)}{x-1}.\frac{1-x^3}{4x^2+12xy+9y^2}\)

=\(2.\frac{-\left(1+x+x^2\right)}{2x+3y}\)

=\(-\frac{2x^2+2x+2}{2x+3y}\)

14 tháng 2 2020

Phần C thiếu x3 , chỗ (x-1)

25 tháng 4 2018

1. \(x^3+3x=x^2y+2y+5\)

\(\Leftrightarrow x^3+3x-x^2y-2y-5=0\)

\(\Leftrightarrow(x^3+2x)-(x^2y+2y)+x-5=0\)

\(\Leftrightarrow x(x^2+2)-y(x^2+2)=5-x\)

\(\Leftrightarrow(x^2+2)\left(x-y\right)=5-x\)

\(\Leftrightarrow\left(x-y\right)=\dfrac{5-x}{2^2+2}\)

Vì x,y nguyên nên x-y nguyên

\(\Rightarrow5-x⋮x^2+2\)

\(\Rightarrow x-5⋮x^2+2\)

\(\Rightarrow(x-5)\left(x+5\right)⋮x^2+2\)

\(\Rightarrow x^2-25⋮x^2+2\)

\(\Rightarrow x^2+2-27⋮x^2+2\)

\(\Rightarrow27⋮x^2+2\)

=> \(x^2+2\) thuộc tập hợp ước dương của 27 ( vì \(x^2+2>0\))

\(\Rightarrow x^2+2\in\left\{1;3;9;27\right\}\)

\(\Rightarrow x^2\in\left\{-1;1;7;25\right\}\)

\(x^{ }\) là số nguyên

=> \(x^2\in\left\{1;25\right\}\)

=> \(x\in\left\{-5;-1;1;5\right\}\)

Ta có bảng:

x -5 -1 1 5
y \(\dfrac{145}{27}\) -3 \(\dfrac{-1}{3}\) 5
Nhận xét Loại Chọn Loại Chọn

Vậy ...

25 tháng 4 2018

Còn phần 2 bạn xem câu hỏi Le chi , mình đã trả lời giúp bạn ấy rồi

11 tháng 10 2019

Bài 1: Đặt \(f\left(x\right)=\left(x^2+x+1\right)^{10}+\left(x^2-x+1\right)^{10}-2\)

Giả sử  \(f\left(x\right)\)chia hết cho x-1

\(\Rightarrow f\left(x\right)=\left(x-1\right)q\left(x\right)\)

\(\Rightarrow f\left(1\right)=\left(1-1\right)q\left(1\right)\)

               \(=0\)

\(\Leftrightarrow\left(1^2+1+1\right)^{10}+\left(1^2-1+1\right)^{10}-2=0\)

Mà \(\left(1^2+1+1\right)^{10}+\left(1^2-1+1\right)^{10}-2=59048\)

\(\Rightarrow\)mâu thuẫn 

\(\Rightarrow f\left(x\right)\)không chia hết cho x-1 ( trái với đề bài )

Bài 2:

x^4-x^3-3x^2+ax+b x^2-x-2 x^2-1 x^4-x^3-2x^2 - - -x^2+ax+b -x^2+x+2 - (a-1)x+b-2

Vì \(x^4-x^3-3x^2+ax+b\)chia cho \(x^2-x-2\)dư \(2x-3\)

\(\Rightarrow\left(a-1\right)x+b-2=2x-3\)

Đồng nhất hệ  số 2 vế ta được:

\(\hept{\begin{cases}a-1=2\\b-2=-3\end{cases}\Leftrightarrow}\hept{\begin{cases}a=3\\b=-1\end{cases}}\)

Vậy ...

Bài 3:

Vì \(P\left(x\right)\)chia \(x+3\)dư 1

\(\Rightarrow P\left(x\right)=\left(x+3\right)q\left(x\right)+1\)

\(\Rightarrow q\left(-3\right)=\left(-3+3\right)q\left(-3\right)+1\)

                      \(=1\left(1\right)\)

Vì \(P\left(x\right)\)chia \(x-4\)dư 8

\(\Rightarrow P\left(x\right)=\left(x-4\right)q\left(x\right)+8\)

\(\Rightarrow P\left(4\right)=\left(4-4\right)q\left(4\right)+8\)

                    \(=8\left(2\right)\)

Vì \(P\left(x\right)\)chia cho \(\left(x+3\right)\left(x-4\right)\)được thương là 3x và còn dư

\(\Rightarrow P\left(x\right)=\left(x+3\right)\left(x-4\right)3x+ax+b\left(3\right)\)

Từ (1) , (2) và (3) \(\Rightarrow\hept{\begin{cases}-3a+b=1\\4a+b=8\end{cases}\Leftrightarrow\hept{\begin{cases}-12a+3b=4\\12a+3b=24\end{cases}\Leftrightarrow}\hept{\begin{cases}b=4\\a=1\end{cases}\left(4\right)}}\)

Thay (4) vào (3) ta được:

\(P\left(x\right)=\left(x+3\right)\left(x-4\right)3x+x+4\)

\(\Leftrightarrow P\left(x\right)=3x^3-3x^2-20x+4\)

11 tháng 10 2019

cảm ơn nhé