Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(3x^2-3xy+5x-5y\)
\(=\left(3x^2-3xy\right)+\left(5x-5y\right)\)
\(=3x.\left(x-y\right)+5.\left(x-y\right)\)
\(=\left(x-y\right).\left(3x+5\right)\)
2.
\(x^2+y^2+2xy-x-y\)
\(=\left(x^2+2xy+y^2\right)-\left(x+y\right)\)
\(=\left(x+y\right)^2-\left(x+y\right)\)
\(=\left(x+y\right).\left(x+y-1\right)\)
3.
\(x^2-xy+x-y\)
\(=\left(x^2-xy\right)+\left(x-y\right)\)
\(=x.\left(x-y\right)+\left(x-y\right)\)
\(=\left(x-y\right).\left(x+1\right)\)
4.
\(x^2-2xy+y^2-z^2+2zt-t^2\)
\(=\left(x^2-2xy+y^2\right)-\left(z^2-2zt+t^2\right)\)
\(=\left(x-y\right)^2-\left(z-t\right)^2\)
\(=\left[x-y-\left(z-t\right)\right].\left[x-y+\left(z-t\right)\right]\)
\(=\left(x-y-z+t\right).\left(x-y+z-t\right)\)
6.
\(2x^2-8x+6\)
\(=2.\left(x^2-4x+3\right)\)
\(=2.\left(x^2-3x-x+3\right)\)
\(=2.\left[\left(x^2-3x\right)-\left(x-3\right)\right]\)
\(=2.\left[x.\left(x-3\right)-\left(x-3\right)\right]\)
\(=2.\left(x-3\right).\left(x-1\right)\)
Chúc bạn học tốt!
Bài làm:
1)3x2 + 5y - 3xy - 5x = (3x2 - 3xy) + (5y - 5x)
= 3x(x - y) + 5(y - x)
= 3x(x - y) - 5(x - y)
(3x - 5)(x - y)
2)3y2 - 3z2 + 3x2 + 6xy = (3x2 + 6xy + 3y2) - 3z2
= (\(\sqrt{3x}\) + \(\sqrt{3y}\))2 - (\(\sqrt{3z}\))2
= (\(\sqrt{3x}\) + \(\sqrt{3y}\) - \(\sqrt{3z}\)).(\(\sqrt{3x}\) + \(\sqrt{3y}\) + \(\sqrt{3z}\))
4)x2 - 25 - 2xy + y2 = (x2 - 2xy + y2) - 25
= (x - y)2 - 52
= (x - y - 5).(x - y + 5)
5)x5 - 3x4 + 3x3 - x2 = x2.(x3 - 3x2 - 3x - 1)
Còn câu 3) Vàng sẽ nghĩ sau :v
1)\(x^4+2x^3+x^2\)
=\(\left(x^4+x^3\right)+\left(x^3+x^2\right)\)đật nhân tử chung ra
=\(x^2\left(x+1\right)^2\)
2) pt => \(\left(x^3+3x^2y+3xy^2+y^3\right)-\left(x+y\right)\)
=\(\left(x+y\right)^3-\left(x+y\right)\)
=\(\left(x+y\right)\left(\left(x+y\right)^2+1\right)\)
3)chia tất cả cho 5 pt => \(x^2-2xy+y^2-4x^2\)
=\(\left(x+y\right)^2-4z^2\)
=\(\left(x+y+2z\right)\left(x+y-2z\right)\)
4)pt => \(2\left(x-y\right)-\left(x^2-2xy+y^2\right)\)
=\(2\left(x-y\right)-\left(x-y\right)^2\)
=\(\left(x-y\right)\left(2-x+y\right)\)
k chi nha
\(1,3x-24y=3\left(x-8y\right)\)
\(2,6x^3y^2-12x^2y^2-3x^2y=3x^2y\left(2xy-4y-1\right)\)
\(3,7x\left(x-2\right)-8\left(x-2\right)=\left(x-2\right)\left(7x-8\right)\)
...(tương tự)
\(10,5x-5y+x^2-xy=5\left(x-y\right)+x\left(x-y\right)=\left(x-y\right)\left(x+5\right)\)
\(11,x^2+2xy+y^2-16=\left(x+y\right)^2-16=\left(x+y-4\right)\left(x+y+4\right)\)
a,\(\frac{1}{5}x^2y\left(15xy^2-5y+3xy\right)=3x^3y^3-x^2y^2+\frac{3}{5}x^3y^2\)
b,\(5x^3-5x=5x\left(x^2-1\right)=5x\left(x-1\right)\left(x+1\right)\)
c, \(3x^2+5y-3xy-5x=3x\left(x-y\right)-5\left(x-y\right)\)
\(=\left(3x-5\right)\left(x-y\right)\)
1) 1/5x2y( 15xy2 - 5y + 3xy ) = 3x3y3 - x2y2 + 3/5x3y2
2) a) 5x3 - 5x = 5x( x2 - 1 ) = 5x( x2 - 12 ) = 5x( x - 1 )( x + 1 )
b) 3x2 + 5y - 3xy - 5x = ( 3x2 - 3xy ) + ( 5y - 5x )
= 3x( x - y ) + 5( y - x )
= 3x( x - y ) + 5[ -( x - y ) ]
= 3x( x - y ) - 5( x - y )
= ( 3x - 5 )( x - y )
\(x^4+4=x^4+4x^2+4-4x^2=\left(x^2+2\right)^2-\left(2x\right)^2=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)
\(x^2+2xy+y^2-16=\left(x+y\right)^2-4^2=\left(x+y-4\right)\left(x+y+4\right)\)
\(3x^2+5x-3xy-5y=3x\left(x-y\right)+5\left(x-y\right)=\left(x-y\right)\left(3x+5\right)\)
Đề là: Phân tích đa thức thành nhân tử ?