Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
GIÚP MÌNH VỚI ĐỀ BÀI LÀ RÚT GỌN THÔI NHA THUỘC KIỂU HẰNG ĐẲNG THỨC 6 VÀ 7 GIÚP MÌNH VỚI MÌNH CẦN GẤP TRONG TỐI NAY GIÚP VỚI
Bài 1
1) 4x - x2 - 4 = 0
⇔ -( x2 - 4x + 4 ) = 0
⇔ -( x - 2 )2 = 0
⇔ x - 2 = 0
⇔ x = 2
2) 4( x - 1 )2 - ( 5 - 2x )2 = 0
⇔ 22( x - 1 )2 - ( 5 - 2x )2 = 0
⇔ ( 2x - 2 )2 - ( 5 - 2x ) = 0
⇔ ( 2x - 2 - 5 + 2x )( 2x - 2 + 5 - 2x ) = 0
⇔ ( 4x - 7 ).3 = 0
⇔ 4x - 7 = 0
⇔ x = 7/4
3) 9( x - 2 )2 - 4( 3 - x )2 = 0
⇔ 32( x - 2 )2 - 22( x - 3 )2 = 0
⇔ ( 3x - 6 )2 - ( 2x - 6 )2 = 0
⇔ ( 3x - 6 - 2x + 6 )( 3x - 6 + 2x - 6 ) = 0
⇔ x( 5x - 12 ) = 0
⇔ x = 0 hoặc 5x - 12 = 0
⇔ x = 0 hoặc x = 12/5
4) x2 - 6x + 5 = 0
⇔ x2 - 5x - x + 5 = 0
⇔ x( x - 5 ) - ( x - 5 ) = 0
⇔ ( x - 5 )( x - 1 ) = 0
⇔ x - 5 = 0 hoặc x - 1 = 0
⇔ x = 5 hoặc x = 1
Bài 2.
1) x2 - z2 + y2 - 2xy
= ( x2 - 2xy + y2 ) - z2
= ( x - y )2 - z2
= ( x - y - z )( x - y + z )
2) a3 - ay - a2x + xy
= ( a3 - a2x ) - ( ay - xy )
= a2( a - x ) - y( a - x )
= ( a - x )( a2 - y )
3) 2xy + 3z + 6y + xz
= ( 2xy + 6y ) + ( xz + 3z )
= 2y( x + 3 ) + z( x + 3 )
= ( x + 3 )( 2y + z )
4) x2 + 2xz + 2xy + 4yz
= ( x2 + 2xy ) + ( 2xz + 4yz )
= x( x + 2y ) + 2z( x + 2y )
= ( x + 2y )( x + 2z )
5) ( x + y + z )3 - x3 - y3 - z3
= x3 + y3 + z3 + 3( x + y )( y + z )( x + z ) - x3 - y3 - z3
= 3( x + y )( y + z )( x + z )
Lời giải:
1. \(\frac{x^2+x}{4x+4}=\frac{x(x+1)}{4(x+1)}=\frac{x}{4}\)
2. \(\frac{x^2-6x+9}{(x-3)^3}=\frac{x^2-2.x.3+3^2}{(x-3)^3}=\frac{(x-3)^2}{(x-3)^3}=\frac{1}{x-3}\)
3. \(\frac{x^2+2x+1}{2x^2+2x}=\frac{(x+1)^2}{2x(x+1)}=\frac{x+1}{2x}\)
4. \(\frac{x^2y^2z^2t^3}{3xy^3zt^2}=\frac{xzt}{3y}\)
5. \(\frac{2xy(x+3)^2}{10x^3y^2(x+3)^5}=\frac{2xy(x+3)^2}{2xy.(x+3)^2.5x^2y(x+3)^3}=\frac{1}{5x^2y(x+3)^3}\)
1
Ta có: \(\frac{x^2+x}{4x+4}=\frac{x\left(x+1\right)}{4\left(x+1\right)}=\frac{x\left(x+1\right):\left(x+1\right)}{4\left(x+1\right):\left(x+1\right)}=\frac{x}{4}\)
2
Ta có: \(\frac{x^2-6x+9}{\left(x-3\right)^3}=\frac{\left(x-3\right)^2}{\left(x-3\right)^3}=\frac{\left(x-3\right)^2:\left(x-3\right)^2}{\left(x-3\right)^3:\left(x-3\right)^2}=\frac{1}{x-3}\)
3
Ta có: \(\frac{x^2+2x+1}{2x^2+2x}=\frac{\left(x+1\right)^2}{2x\left(x+1\right)}=\frac{\left(x+1\right)^2:\left(x+1\right)}{2x\left(x+1\right):\left(x+1\right)}=\frac{x+1}{2x}\)
đi qua đường vào giúp cho một câu:
\(a^3+b^3+c^3-3abc\)
\(=a^3+3ab\left(a+b\right)+b^3+c^3-3abc-3ab\left(a+b\right)\)
\(=\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(\left(a+b\right)^2+c\left(a+b\right)+c^2\right)-3ab\left(a+b+c\right)\)
\(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)
==" thui thêm câu nữa mai kiểm tra 1 tiết ùi :D
\(x^2-2xy+y^2+3x-3y-10\)
\(=\left(x-y\right)^2+3\left(x-y\right)-10\)
\(=\left(x-y\right)\left(x-y+3\right)-10\)
Đặt x-y = a, có:
\(a\left(a+3\right)-10\)
\(=a^2+3a-10\)
\(=\left(a+5\right)\left(a-2\right)\)
\(=\left(x-y+5\right)\left(x-y-2\right)\)
1: \(=\dfrac{x^2\cdot4xy^2}{x^2}=4xy^2\)
2: \(=\dfrac{3x\left(x-2\right)}{-\left(x-2\right)}=-3x\)
3: \(=\dfrac{\left(x-2\right)\left(x^2+2x+4\right)}{x^2+2x+4}=x-2\)
6: \(\dfrac{5\left(x-y\right)^4-3\left(x-y\right)^3+4\left(x-y\right)^2}{\left(x-y\right)^2}=5\left(x-y\right)^2-3\left(x-y\right)+4\)
Bài 1:
a)\(5x^2y^3-25x^3y^4+10x^3y^3=5x^2y^3\left(1-5xy+2x\right)\)
b)\(x^3-2xy-x^2y+2y^2=\left(x^3-x^2y\right)-\left(2xy-2y^2\right)=x^2\left(x-y\right)-2y\left(x-y\right)=\left(x-y\right)\left(x^2-2y\right)\)
c)Đề sai hoàn toàn
d) \(2x^2+4xy+2y^2-8z^2=2\left(x^2+2xy+y^2-4z^2\right)=2\left[\left(x+y\right)^2-\left(2z\right)^2\right]=2\left(x+y-2z\right)\left(x+y+2z\right)\)e) \(3x-3a+yx-ya=3\left(x-a\right)+y\left(x-a\right)=\left(x-a\right)\left(3+y\right)\)
f)\(\left(x^2+y^2\right)^2-4x^2y^2=\left(x-y\right)^2\left(x+y\right)^2\)
g)\(2x^2-5x+2=2x^2-x-4x+2=x\left(2x-1\right)-2\left(2x-1\right)=\left(2x-1\right)\left(x-2\right)\)
i)\(14x\left(x-y\right)-21y\left(y-x\right)+28z\left(x-y\right)=14x\left(x-y\right)+21y\left(x-y\right)+28z\left(x-y\right)=7\left(x-y\right)\left(2x+3y+4z\right)\)
Câu 1:
$(2x^2-3)(x+5)=2x^2(x+5)-3(x+5)=2x^3+10x^2-3x-15$
Câu 2:
a.
$(x+3)^2=x^2+2.x.3+3^2=x^2+6x+9$
b.
$y^2-25=y^2-25$
\(x^4+2x^3+x^2=x^2\left(x^2+2x+1\right)=x^2\left(x+1\right)^2\\ x^2-6x=x\left(x-6\right)\\ x^2-2xy-z^2+y^2=\left(x-y\right)^2-z^2=\left(x-y-z\right)\left(x-y+z\right)\)