
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


1/ \(\left(x^2+x+4\right)^2+8x\left(x^2+x+4\right)+15x^2=x^4+10x^3+32x^2+40x+16\)(làm tắt nhưng chắc bạn tự hiểu đc)
\(=\left(x^4+2x^3\right)+\left(4x^2+2x^3\right)+\left(12x^2+6x^3\right)+\left(4x^2+8x\right)+\left(12x^2+24x\right)+\left(8x+16\right)\)
\(=x^3\left(x+2\right)+2x^2\left(2+x\right)+6x^2\left(2+x\right)+4x\left(x+2\right)+12x\left(x+2\right)+8\left(x+2\right)\)
\(=\left(x+2\right)\left(x^3+2x^2+6x^2+4x+12x+8\right)=\left(x+2\right)\left(x^3+8x^2+16x+8\right)\)
\(=\left(x+2\right)\left[\left(x^3+2x^2\right)+\left(6x^2+12x\right)+\left(4x+8\right)\right]=\left(x+2\right)\left[x^2\left(x+2\right)+6x\left(x+2\right)+4\left(x+2\right)\right]\)
\(=\left(x+2\right)\left(x+2\right)\left(x^2+6x+4\right)\)
2/ \(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16=x^4+20x^3+140x^2+400x+400\)
\(=\left(x^4+10x^3+20x^2\right)+\left(10x^3+100x^2+200x\right)+\left(20x^2+200x+400\right)\)
\(=x^2\left(x^2+10x+20\right)+10x\left(x^2+10x+20\right)+20\left(x^2+10x+20\right)\)
\(=\left(x^2+10x+20\right)\left(x^2+10x+20\right)=\left(x^2+10x+20\right)^2\)

(x^2+5x+4)(x^2+5x+6)-24
Đặt x^2+5x+5 = a
Do đó (a-1)(a+1)-24
= a^2- 25
= a^2-5^2 =(a-5)(a+5)
= ( x^2+5x+5-5)( x^2+5x+5+5)
= ( x^2+5x)( x^2+5x+10)

a, \(\left(x^2-2x\right)\left(x^2-2x-1\right)-6\)
Đặt \(x^2-2x=a\)
Thay vào biểu thức ta đc:
\(a.\left(a-1\right)-6=a^2-a-6\) \(=a^2-3a+2a-6=a\left(a-3\right)+2\left(a-3\right)\)
\(=\left(a-3\right).\left(a+2\right)\)
\(\Rightarrow\left(x^2-2x\right)\left(x^2-2x-1\right)-6=\left(x^2-2x-3\right)\left(x^2-2x+2\right)\)
b, \(\left(x^2+x+4\right)^2+8x\left(x^2+x+4\right)+15x^2\)
\(=\left[\left(x^2+x+4\right)^2+6x\left(x^2+x+4\right)+9x^2\right]+\left[2x\left(x^2+x+4\right)+6x^2\right]\)
\(=\left(x^2+x+4+3x\right)^2+2x\left(3x+x^2+x+4\right)\)
\(=\left(x^2+4x+4\right)\left(x^2+4x+4+2x\right)\) \(=\left(x+2\right)^2\left(x^2+6x+4\right)\)

a) \(x^3-x^2-4=x^3-2x^2+x^2-4=x^2\left(x-2\right)+\left(x-2\right)\left(x+2\right)=\left(x-2\right)\left(x^2+x+2\right)\)
b) \(x^3-5x^2+8x-4=x^3-x^2-4x^2+4x+4x-4=x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2-4x+4\right)=\left(x-1\right)\left(x-2\right)^2\)
c) \(2x^3-12x^2+17x-2=2x^3-4x^2-8x^2+16x+x-2=2x^2\left(x-2\right)-8x\left(x-2\right)+\left(x-2\right).\)
\(=\left(x-2\right)\left(2x^2-8x+1\right)\)
d) \(2x^4+x^3-22x^2+15x+36=2x^4+2x^3-x^3-x^2-21x^2-21x+36x+36.\)
\(=2x^3\left(x+1\right)-x^2\left(x+1\right)-21x\left(x+1\right)+36\left(x+1\right)\)
\(=\left(x+1\right)\left(2x^3-x^2-21x+36\right)\)

câu d nè bạn
\(x^3+9x^2+23x+15=x^3+5x^2+4x^2+20x+3x+15\)
=\(x^2\left(x+5\right)+4x\left(x+5\right)+3\left(x+5\right)\)
=\(\left(x^2+4x+3\right)\left(x+5\right)=\left(x+1\right)\left(x+3\right)\left(x+5\right)\)
câu c nè
\(x^3-6x^2-x+30=\left(x^3-5x^2\right)-\left(x^2-5x\right)-\left(6x-30\right)\)
\(=x^2\left(x-5\right)-x\left(x-5\right)-6\left(x-5\right)=\left(x^2-x-6\right)\left(x-5\right)\)
=\(\left(x+2\right)\left(x-3\right)\left(x-5\right)\)
tick rui minh làm tiếp cho

a) ( 5 - 2x )( 2x + 7 ) - 4x2 + 25 = 0
<=> ( 5 - 2x )( 2x + 7 ) + ( 5 - 2x )( 5 + 2x ) = 0
<=> ( 5 - 2x )( 2x + 7 + 5 + 2x ) = 0
<=> ( 5 - 2x )( 4x + 12 ) = 0
<=> \(\orbr{\begin{cases}5-2x=0\\4x+12=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-3\end{cases}}\)
b) ( 5x2 + 3x - 2 )2 - ( 4x2 - x - 5 )2 = 0 ( như này chứ nhỉ ? )
<=> [ ( 5x2 + 3x - 2 ) - ( 4x2 - x - 5 ) ][ ( 5x2 + 3x - 2 ) + ( 4x2 - x - 5 ) ] = 0
<=> ( 5x2 + 3x - 2 - 4x2 + x + 5 )( 5x2 + 3x - 2 + 4x2 - x - 5 ) = 0
<=> ( x2 + 4x + 3 )( 9x2 + 2x - 7 ) = 0
<=> ( x2 + x + 3x + 3 )( 9x2 + 9x - 7x - 7 ) = 0
<=> [ x( x + 1 ) + 3( x + 1 ) ][ 9x( x + 1 ) - 7( x + 1 ) ] = 0
<=> ( x + 1 )( x + 3 )( x + 1 )( 9x - 7 ) = 0
<=> ( x + 1 )2( x + 3 )( 9x - 7 ) = 0
<=> x + 1 = 0 hoặc x + 3 = 0 hoặc 9x - 7 = 0
<=> x = -1 hoặc x = -3 hoặc x = 7/9
c) 15x4 - 8x3 - 14x2 - 8x + 15 = 0
<=> 15x4 + 22x3 - 30x3 + 15x2 + 15x2 - 44x2 - 30x + 22x + 15 = 0
<=> ( 15x4 + 22x3 + 15x2 ) - ( 30x3 + 44x2 + 30x ) + ( 15x2 + 22x + 15 ) = 0
<=> x2( 15x2 + 22x + 15 ) - 2x( 15x2 + 22x + 15 ) + ( 15x2 + 22x + 15 ) = 0
<=> ( 15x2 + 22x + 15 )( x2 - 2x + 1 ) = 0
<=> ( 15x2 + 22x + 15 )( x - 1 )2 = 0
<=> \(\orbr{\begin{cases}15x^2+22x+15=0\\\left(x-1\right)^2=0\end{cases}}\)
+) ( x - 1 )2 = 0 <=> x = 1
+) 15x2 + 22x + 15 = 15( x2 + 22/15x + 121/225 ) + 104/15 = 15( x + 11/25 )2 + 104/15 ≥ 104/15 > 0 ∀ x
Vậy phương trình có nghiệm duy nhất là x = 1

Ta có \(A=3x\left(5x^2-4\right)+x^2\left(8-15x\right)-8x^2\)
\(A=15x^3-12x+8x^2-15x^3-8x^2\)
\(A=-12x\)
và \(\left|x\right|=3\)
=> \(\orbr{\begin{cases}x=3\\x=-3\end{cases}}\)
Thay x = 3 vào biểu thức \(A=-12x\), ta có: -12. 3 = -36
Thay x = -3 vào biểu thức \(A=-12x\), ta có: -12 (-3) = 36
Vậy với \(\left|x\right|=3\)thì \(A=\pm36\).

a>6x\(^4\)-11x\(^2\)+3
=6x\(^4\)-2x\(^2\)-9x\(^2\)+3
=2x\(^2\)(3x\(^2\)-1)-3(3x\(^2\)-1)
=(3x\(^2\)-1)(\(2x^2\)-3)
b>(\(x^2+x+4\))\(^2\)+8x(\(x^2+x+4\))+15x\(^2\)
=(\(x^2+x+4\))\(^2\)+3x(x\(^2\)+x+4)+5x(x\(^2\)+x+4)+15x\(^2\)
=(x\(^2\)+x+4)(x\(^2\)+x+4+3x)+5x(x\(^2\)+x+4+3x)
=(x\(^2\)+x+4+3x)(x\(^2\)+x+4+5x)
=(x+2)\(^2\)(x\(^2\)+6x+4)
PT <=> \(x^2+8x+16+8x\left(x^2+8x+16\right)+15x^2\)
\(=x^2+8x+16+8x^3+64x^2+112+15x^2\)
\(=80x^2+8x^3+128=8\left(10x^2+x^3+16\right)\)