Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x^4+128y^4\)
\(=2x^4+2.\left(8y^2\right)^2\)
\(=2\left[x^4+\left(8y^2\right)^2\right]\)
\(=2\left[x^4+2x^28y^2+\left(8y^2\right)^2-2x^28y^2\right]\)
\(=2\left[\left(x^2+8y^2\right)^2-\left(4xy\right)^2\right]\)
\(=2\left(x^2-4xy+8y^2\right)\left(x^2+4xy+8y^2\right)\)
2x4+128x^4
2x^4+2.(8y^2)^2
2.(x^4+(8y^2)^2)
2.((x^2)^2+2.x^2.8y^2+(8y^2)^2-2x^2.8y^2)
2.(x^2+8y^2)-(4.x.y)^2
2.((x^2+8y^2)-4xy).((x^2+8y^2)+4xy)
2.(x^2+8y^2-4xy).(x^2+8y^2+4xy)
\(x^4+16\)
\(=x^4+4x^2+16-4x^2\)
\(=\left(x^2+4\right)^2-4x^2\)
\(=\left(x^2-2x+4\right)\left(x^2+2x+4\right)\)
\(x^4+16\)
\(=x^4+4x^2+16-4x^2\)
\(=\left(x^2+4\right)^2-4x^2\)
\(=\left(x^2-2x+4\right)\left(x^2+2x+4\right)\)
a)x3+x2+4
=x3-x2+2x+2x2-2x+4
=x(x2-x+2)+2(x2-x+2)
=(x+2)(x2-x+2)
b)x3-2x-4
=x3+2x2+2x-2x2-4x-4
=x(x2+2x+2)-2(x2+2x+2)
=(x-2)(x2+2x+2)
x^4+x^2+1 = (x^4+2x^2+1)-x^2 = (x^2+1)^2-x^2 = (x^2-x+1).(x^2+x+1)
k mk nha
x5-x4-1=x5-x3-x2-x4+x2+x+x3-x-1
=x2.(x3-x-1)-x.(x3-x-1)+(x3-x-1)
=(x3-x-1)(x2-x+1)
x^4+x^2+1 = (x^4+2x^2+1)-x^2 = (x^2+1)^2-x^2 = (x^2-x+1).(x^2+x+1)
k mk nha
\(x^4+x^2+x\)
\(=x^2+x+x^4\)
\(=x^2+2x.\frac{1}{2}+\frac{1}{2}^2-\frac{1}{2}^2+x^4\)
\(=\left(x^2+2x.\frac{1}{2}+\frac{1}{2}^2\right)-\frac{1}{2}^2+x^4\)
\(=\left(x+\frac{1}{2}\right)^2-\frac{1}{2}^2+x^4\)
\(=\left(x+\frac{1}{2}\right)^2-\frac{1}{4}+x^4\)
\(=\left(x+\frac{1}{2}\right)^2-\sqrt{\frac{1}{4}}^2+x^4\)
\(=\left(x+\frac{1}{2}-\sqrt{\frac{1}{4}}\right).\left(x+\frac{1}{2}+\sqrt{\frac{1}{4}}\right)+x^4\)
Đến đây dễ rồi .Biến đổi ngoặc bên phải giống ngoặc trái rồi mở ngoặc đặt nhân tử chung là được .
\(=x^4+2x^2+1-\left(\sqrt{2}x\right)^2\)
\(=\left(x^2+1\right)^2-\left(\sqrt{2}x\right)^2\)
\(=\left(x^2+1-\sqrt{2}x\right)\left(x^2+1+\sqrt{2}x\right)\)
\(x^4+1\)
\(=x^4+2x^2+1-2x^2\)
\(=\left(x^2+1\right)^2-\left(x\sqrt{2}\right)^2\)
\(=\left(x^2-x\sqrt{2}+1\right)\left(x^2+x\sqrt{2}+1\right)\)