K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2017

(x+4)(x2 -4x-4x+16)

=(x+4)(x2 -8x+16)

=(x-8x)(4+16)(x2)

=-7x.20.x2

=>sap xep x2.(-7x).20

chuc ban hoc tot

25 tháng 7 2018

+) \(\left(x-3\right)^2=16\)

\(\Rightarrow\orbr{\begin{cases}\left(x-3\right)^2=4^2\\\left(x-3\right)^2=\left(-4\right)^2\end{cases}\Rightarrow}\orbr{\begin{cases}x-3=4\\x-3=-4\end{cases}}\Rightarrow\orbr{\begin{cases}x=7\\x=-1\end{cases}}\)

Vậy x = 7 hoặc x = -1

+) \(\left(1-3x\right)^3=-64\)

\(\Rightarrow\left(1-3x\right)^3=\left(-4\right)^3\)

\(\Rightarrow1-3x=-4\)

\(\Rightarrow3x=1+4\)

\(\Rightarrow3x=5\)

\(\Rightarrow x=5:3\)

\(\Rightarrow x=\frac{5}{3}\)

Vậy  \(x=\frac{5}{3}\)

+) \(x^{13}=27.x^{10}\)

\(\Rightarrow x^{13}:x^{10}=27\)

\(\Rightarrow x^3=27\)

\(\Rightarrow x^3=3^3\)

\(\Rightarrow x=3\)

Vậy x = 3

+) \(\left(4x-1\right)^2=\left(1-4x\right)^4\)

\(\Rightarrow\left(4x-1\right)^2=\left(4x-1\right)^4\)

\(\Rightarrow\left(4x-1\right)^2-\left(4x-1\right)^4=0\)

\(\Rightarrow\left(4x-1\right)^2\left[1-\left(4x-1\right)^2\right]=0\)

\(\Rightarrow\orbr{\begin{cases}\left(4x-1\right)^2=0\\1-\left(4x-1\right)^2=0\end{cases}}\Rightarrow\orbr{\begin{cases}\left(4x-1\right)^2=0\\\left(4x-1\right)^2=1\end{cases}}\)

TH 1 : \(\left(4x-1\right)^2=0\Rightarrow4x-1=0\Rightarrow4x=1\Rightarrow x=\frac{1}{4}\)

TH 2 : \(\left(4x-1\right)^2=1\Rightarrow\orbr{\begin{cases}4x-1=1\\4x-1=-1\end{cases}}\Rightarrow\orbr{\begin{cases}4x=2\\4x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=0\end{cases}}\)

Vậy  \(x\in\left\{\frac{1}{4};\frac{1}{2};0\right\}\)

_Chúc bạn học tốt_

25 tháng 7 2018

a, (x-3)^2 = 16

=> (x-3)^2=4^2

=> x-3=4

=> x= 4+3

=> x = 7 .Vậy x =7

b,(1-3x)^3 = 64

=> ( 1-3x)^3 = 4^3

=> 1-3x = 4

=> 3x = 1-4

=> 3x = -3

=> x = -1 . Vậy x = -1

c, x^13 = 27.x^10

=> x^13 : x^10 = 27

=> x^3 = 3^3

=> x = 3 . Vậy x = 3

22 tháng 7 2019

\(4x^4-21x^2y^2+y^4\)

\(=\left(4x^4+4x^2y^2+y^4\right)-25x^2y^2\)

\(=\left(2x^2+y^2\right)^2-\left(5xy\right)^2\)

\(=\left(2x^2+y^2-5xy\right)\left(2x^2+y^2+5xy\right)\)

23 tháng 7 2019

\(x^5-5x^3+4x\)

\(=x\left(x^4-5x^2+4\right)\)

\(a,4x^4-21x^2y^2+y^4=\left(2x^2\right)^2+4x^2y^2+y^4-4x^2y^2-21x^2y^2\)

\(=\left(2x^2+y^2\right)^2-25x^2y^2\)

\(=\left(2x^2+y^2-5xy\right)\left(2x^2+y^2+5xy\right)\)

\(b,x^5-5x^3+4x=x\left(x^4-5x^2+4\right)\)

\(=x\left(x^4-4x^2-x^2+4\right)\)

\(=x\left[x^2\left(x^2-4\right)-\left(x^2-4\right)\right]\)

\(=x\left(x^2-4\right)\left(x^2-1\right)\)

\(=x\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)\)

\(c,x^3+5x^2+3x-9=x^3-x^2+6x^2-6x+9x-9\)

\(=x^2\left(x-1\right)+6x\left(x-1\right)+9\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2+6x+9\right)\)

\(=\left(x-1\right)\left(x^2+3x+3x+9\right)\)

\(=\left(x-1\right)\left[x\left(x+3\right)+3\left(x+3\right)\right]\)

\(=\left(x-1\right)\left(x+3\right)\left(x+3\right)\)

\(=\left(x-1\right)\left(x+3\right)^2\)

\(d,x^{16}+x^8-2=x^{16}+2x^8-x^8-2\)

\(=x^8\left(x^8-1\right)+2\left(x^8-1\right)\)

\(=\left(x^8-1\right)\left(x^8+2\right)\)

8 tháng 5 2017

Giải:

a)

- Thu gọn: \( f(x)=18 - x^4 + 4x - 2x^4 + x^2 -16\)

\( f(x)=18 - x^4 + 4x - 2x^4 + x^2 -16\)

\( f(x)=(18-16)+(-x^4-2x^4)+4x+x^2\)

\(f\left(x\right)=2-3x^4+4x+x^2\)

Sắp xếp: \(4x+x^2-3x^4+2\)

- Thu gọn: \(g(x)=2+x^4+4x^2+7x-6x^4-3x\)

\(g(x)=2+x^4+4x^2+7x-6x^4-3x\)

\(g(x)=2+(x^4-6x^4)+4x^2+(7x-3x)\)

\(g\left(x\right)=2-5x^4+4x^2+4x\)

Sắp xếp: \(4x+4x^2-5x^4+2\)

b)

\(f(x)+g(x)=(4x+x^2-3x^4+2)+(4x+4x^2-5x^4+2)\)

\(=4x+x^2-3x^4+2+4x+4x^2-5x^4+2\)

\(=\left(4x+4x\right)+\left(x^2+4x^2\right)-\left(3x^4-5x^4\right)+\left(2+2\right)\)

\(=8x+5x^2-\left(-2x^4\right)+4\)

\(f(x)-g(x)=(4x+x^2-3x^4+2)-(4x+4x^2-5x^4+2)\)

\(=4x+x^2-3x^4+2-4x-4x^2+5x^4-2\)

\(=\left(4x+4x\right)+\left(x^2-4x^2\right)-\left(3x^4+5x^4\right)+\left(2-2\right)\)

\(=8x+\left(-3x^2\right)-8x^4\)

G(x) = (x-3).(16-4x)

Nếu G(x) = 0 thì (x-3).(16-4x) =>  (x-3)= (16-4x)=0

* x-3 = 0 => x = 0 +3 =3 : 16 -4x =0 => 4x = 16- 0 => x = 16 : 4= 4

Vậy nó có hai nghiệm là 3 và 4 

19 tháng 4 2016

M(x) = x^2 + 7x - 8

Đặt M(x) = 0 => x^2 + 7x - 8 =0

                   => x^2 - x +8x - 8 = 0 

                   => x( x-1 ) + 8( x - 1 ) = 0

                   => (x-8) . (x-1) = 0

=> x = 8 hoặc x = 1 

16 tháng 6 2017

Nỗi hứng lm cho vui!

Bài 1:

a) H = \(x^2-4x+16=\left(x^2-4x+4\right)+12=\left(x-2\right)^2+12\)

\(\left(x-2\right)^2\ge0\) => H \(\ge\) 12

=> Dấu = xảy ra <=> \(x=2\)

b) K = \(2x^2+9y^2-6xy-8x-12y+2018\)

= \(\left(x^2-6xy+9y^2\right)+4\left(x-3y\right)+\left(x^2-12x+36\right)+1982\)

= \(\left(x-3y\right)^2+4\left(x-3y\right)+4+\left(x-6\right)^2+1978\)

= \(\left(x-3y+2\right)^2+\left(x-2\right)^2+1978\)

\(\left\{{}\begin{matrix}\left(x-3y+2\right)^2\ge0\\\left(x-6\right)^2\ge0\end{matrix}\right.\) => K \(\ge\) 1978

=> Dấu = xảy ra <=> \(\left\{{}\begin{matrix}y=\dfrac{2+x}{3}\\x=6\end{matrix}\right.\) => \(x=6;y=\dfrac{8}{3}\)

16 tháng 6 2017

Bài 2:

a) P = \(-x^2-4x+16=-\left(x^2+4x+4\right)+20\)

= \(-\left(x+2\right)^2+20\le20\)

=> Dấu = xảy ra <=> \(x=-2\)

b) \(Q=-x^2+2xy-4y^2+2x+10y-2017\)

= \(-\left[\left(x^2-2xy+y^2\right)+3\left(y^2-4y+4\right)-2\left(x-y\right)+2005\right]\)

= \(-\left[\left(x-y\right)^2-2\left(x-y\right)+1+3\left(y-2\right)^2+2004\right]\)

= \(-\left[\left(x-y-1\right)^2+3\left(y-2\right)^2\right]-2004\)

\(\left\{{}\begin{matrix}-\left(x-y-1\right)^2\le0\\3\left(y-2\right)^2\le0\end{matrix}\right.\) => Q \(\le-2004\)

=> Dấu = xảy ra <=> \(\left\{{}\begin{matrix}x=y+1\\y=2\end{matrix}\right.\) <=> \(x=3;y=2\)

16 tháng 4 2016

Các nghiệm của M(x) là -8 và 1

Nghiệm của G(x) là 3 và 4

Nghiệm của N(x) là -4/5 và -1

16 tháng 4 2016

x2 + 7x-  8 = 0

x(x + 7) = 8 = 1 . 8 = 2 . 4  = -1 . (-8) = (-2) . (-4)

Thay các x vào thì ta chỉ được x = 1 ; -8