Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-x+8=4\sqrt{x+3}\)đk : x >= -3
\(\Leftrightarrow x\left(x-1\right)+8-4\sqrt{x+3}=0\)
Đặt \(\sqrt{x+3}=t;\Rightarrow x+3=t^2\Leftrightarrow x=t^2-3;x-1=t^2-4\)
khi đó : \(\left(t^2-3\right)\left(t^2-4\right)+8-4t=0\)
\(\Leftrightarrow t^4-7t^2+20-4t=0\)
\(\Leftrightarrow\left(t-2\right)\left(t^3+2t^2-3t-10\right)=0\)
\(\Leftrightarrow t=2;t=\frac{-4+2i}{2}\left(loại\right);\frac{-4-2i}{2}\left(loại\right)\)
Theo cách đặt \(\sqrt{x+3}=2\Leftrightarrow x+3=4\Leftrightarrow x=1\)
Ta có \(\left(\sqrt{x^2+2016}-x\right)\left(\sqrt{x^2+2016}+x\right)=2016\Rightarrow\sqrt{x^2+2016}-x=y+\sqrt{y^2+2016}\)Tương tự, ta có \(\sqrt{y^2+2016}-y=\sqrt{x^2+2016}+x\)
Cộng hai vế, ta có \(2\left(x+y\right)=0\Leftrightarrow x+y=0\)
ĐKXĐ: \(x\ge0\)
\(x^2+\sqrt{x}+7=7\\ x^2+\sqrt{x}=0\\ \sqrt{x}\left(x\sqrt{x}+1\right)=0\\ \Rightarrow\left[{}\begin{matrix}\sqrt{x}=0\\x\sqrt{x}=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x\in\varnothing\end{matrix}\right.\)
vậy phương trình có tập nghiệm là S={0}
\(x^4+\sqrt{x^2+2016}=2016\)
\(\Leftrightarrow x^4+x^2+\frac{1}{4}=x^2+2016-\sqrt{x^2+2016}+\frac{1}{4}\)
\(\Leftrightarrow\left(x^2+\frac{1}{2}\right)^2=\left(\sqrt{x^2+2016}-\frac{1}{2}\right)^2\)
\(\Leftrightarrow x^2+\frac{1}{2}=\sqrt{x^2+2016}-\frac{1}{2}\text{ }\left(do\text{ }\sqrt{x^2+2016}-\frac{1}{2}>0\right)\)
\(\Leftrightarrow x^2+1=\sqrt{x^2+2016}\)
\(t=x^2\ge0\)
\(\rightarrow t+1=\sqrt{t+2016}\Leftrightarrow t^2+2t+1=t+2016\)
\(\Leftrightarrow t^2+t-2015=0\Leftrightarrow t=\frac{-1+\sqrt{8061}}{2}\text{ }\left(do\text{ }t\ge0\right)\)
\(\Leftrightarrow x=\pm\sqrt{\frac{-1+\sqrt{8061}}{2}}\)