Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình giải mẫu pt đầu thôi nhé, những pt sau ttự.
1,\(x^4-\frac{1}{2}x^3-x^2-\frac{1}{2}x+1=0\)
Ta thấy x=0 ko là nghiệm.
Chia cả 2 vế cho x2 >0:
pt\(\Leftrightarrow x^2-\frac{1}{2}x-1-\frac{1}{2x}+\frac{1}{x^2}=0\)
Đặt \(t=x-\frac{1}{x}\left(t\in R\right)\)
\(\Rightarrow x^2+\frac{1}{x^2}=t^2+2\)
pt\(\Leftrightarrow t^2-\frac{1}{2}t+1=0\)(vô n0)
Vậy pt vô n0.
#Walker
Tìm x biết:
b/\(\left(2x+3\right)^2-\left(5x-4\right)\left(5x+4\right)=\left(x+5\right)^2-\left(3x-1\right)\left(7x+2\right)-\left(x^2-x+1\right)\)
<=> \(4x^2 +12x+9-25x^2+16-x^2-10x-25+21x^2+6x-7x-2+x^2-x+1=0\)
<=>0x-1=0
<=>0x=1 (vô lí) (dòng này không cần ghi thêm cũng được)
=> Không có giá trị x nào thỏa mãn
c/ \((1-3x)^2-(x-2)(9x+1)=(3x-4)(3x+4)-9(x+3)^2\)
<=>\(1-6x+9x^2-9x^2-x+18x+2-9x^2+16+9x^2+54x+81=0\)
<=> 65x+100=0
<=> x=\(\dfrac{-20}{13}\)
d/\((3x+4)(3x-4)-(2x+5)^2=(x-5)^2+(2x+1)^2-(x^2-2x)+(x-1)^2\)
<=> \(9x^2-16-4x^2-20x-25-x^2+10x-25-4x^2-4x-1+x^2+2x-x^2+2x-1=0\)
<=> -10x-68=0
<=> x=\(\dfrac{-34}{5}\)
a/ Chắc là bạn ghi nhầm đề? Số cuối là số 9 mới đúng, chứ 27 thì câu này vô nghiệm
\(x^4+4x^3+4x^2+8x^2+12x+27=0\)
\(\Leftrightarrow x^2\left(x+2\right)^2+8\left(x+\frac{3}{4}\right)^2+\frac{45}{2}=0\)
Vế phải dương nên pt vô nghiệm
b/ Nhận thấy \(x=0\) không phải nghiệm, chia 2 vế cho \(x^2\) ta được:
\(x^2+\frac{1}{x^2}-5\left(x-\frac{1}{x}\right)+6=0\)
Đặt \(x-\frac{1}{x}=a\Rightarrow x^2+\frac{1}{x^2}=a^2+2\)
\(\Rightarrow a^2+2-5a+6=0\)
\(\Leftrightarrow a^2-5a+8=0\Rightarrow\) pt vô nghiệm
Lại nhầm đề nữa???? Dấu thứ 2 là dấu + thì pt này có nghiệm đẹp
a)\(pt\Leftrightarrow\left(x-2\right)\left(x^4+x^3+x^2+x+1\right)=0\)
b)\(pt\Leftrightarrow\left(x^2-x-3\right)\left(x^2+x-1\right)=0\)
Bài 4:
$3x^4+10x^3-3x^2-10x+3=0$
Ta đi phân tích $3x^4+10x^3-3x^2-10x+3$ thành nhân tử
Đặt $3x^4+10x^3-3x^2-10x+3=(x^2+ax+b)(3x^2+cx+d)$ với $a,b,c,d$ là các số nguyên
$\Leftrightarrow 3x^4+10x^3-3x^2-10x+3=3x^4+x^3(c+3a)+x^2(d+ac+3b)+x(ad+bc)+bd$
Đồng nhất hệ số:
\(\Rightarrow \left\{\begin{matrix} c+3a=10\\ d+ac+3b=-3\\ ad+bc=-10\\ bd=3\end{matrix}\right.\). Từ $bd=3$. Giả sử $b=-1$
$\Rightarrow d=-3$. Thay vào hệ có được $ac=3; c+3a=10\Rightarrow a=3; c=1$
Vậy $3x^4+10x^3-3x^2-10x+3=(x^2+3x-1)(3x^2+x-3)$
$\Leftrightarrow (x^2+3x-1)(3x^2+x-3)=0$
\(\Rightarrow \left[\begin{matrix} x^2+3x-1=0\\ 3x^2+x-3=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=\frac{-3\pm \sqrt{13}}{2}\\ x=\frac{-1\pm \sqrt{37}}{6}\end{matrix}\right.\)
Bài 3:
$x^4+4x^3+x^2-4x+1=0$
$\Leftrightarrow (x^4+4x^3+4x^2)-3x^2-4x+1=0$
$\Leftrightarrow (x^2+2x)^2-2(x^2+2x)-x^2+1=0$
$\Leftrightarrow (x^2+2x)^2-2(x^2+2x)+1-x^2=0$
$\Leftrightarrow (x^2+2x-1)^2-x^2=0$
$\Leftrightarrow (x^2+x-1)(x^2+3x-1)=0$
\(\Rightarrow \left[\begin{matrix} x^2+x-1=0\\ x^2+3x-1=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=\frac{-1\pm \sqrt{5}}{2}\\ x=\frac{-3\pm \sqrt{!3}}{2}\end{matrix}\right.\)
Vậy.......
b: \(\Leftrightarrow\left(x^2+3x+2\right)\left(x^2+3x-18\right)=-36\)
\(\Leftrightarrow\left(x^2+3x\right)^2-16\left(x^2+3x\right)=0\)
\(\Leftrightarrow\left(x^2+3x\right)\left(x^2+3x-16\right)=0\)
hay \(x\in\left\{0;-3;\dfrac{-3+\sqrt{73}}{2};\dfrac{-3-\sqrt{73}}{2}\right\}\)
c: \(\Leftrightarrow6x^4-18x^3-17x^3+51x^2+11x^2-33x-2x+6=0\)
\(\Rightarrow\left(x-3\right)\left(6x^3-17x^2+11x-2\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(6x^3-12x^2-5x^2+10x+x-2\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-2\right)\left(6x^2-5x+1\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-2\right)\left(3x-1\right)\left(2x-1\right)=0\)
hay \(x\in\left\{3;2;\dfrac{1}{3};\dfrac{1}{2}\right\}\)
d: \(\Leftrightarrow\left(x-1\right)^2\cdot\left(x^2+3x+1\right)=0\)
hay \(x\in\left\{1;\dfrac{-3+\sqrt{5}}{2};\dfrac{-3-\sqrt{5}}{2}\right\}\)
\(x^4+4=5x\left(x^2-2\right)\)
\(\Leftrightarrow x^4-5x^3+10x+4=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^3-6x^2+6x+4\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-2\right)\left(x^2-4x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x-2=0\\x^2-4x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=2\\x=2\pm\sqrt{6}\end{matrix}\right.\)
\(X^4+4=5X\left(X^2-2\right)\\ \Leftrightarrow X^4-5X^3+10X+4=0\\ \Leftrightarrow\left(X+1\right)\left(X-2\right)\left(X^2-4X-2\right)\)
\(\left[{}\begin{matrix}X+1=0\\X-2=0\\X^2-4X-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}X=-1\\X=2\\X=2+\sqrt{6}\\X=2-\sqrt{6}\end{matrix}\right.\)
VẬY......