K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2021

             x4-30x2+31x-30 =0

<=>  x4- x - 30x2+30x - 30 =0

<=> x ( x3- 1) - 30 (x2 - x + 1)  =0

<=> x ( x-1) ( x2 - x + 1) - 30 (x2 - x + 1)  =0

<=>(x ( x-1) - 30) ( x2 - x + 1) =0

<=>(x2 -x -30) ( x2 - x + 1) =0

<=>( x2 - x + 1) ( x- 5x + 6x - 30) =0

<=> ( x2 - x + 1) ( x(x-5) + 6 ( x-5)) =0

<=> ( x2 - x + 1) (x-5) (x+6) =0

Vì ( x2 - x + 1) > 0 với mọi x (bình phương thiếu)

=> (x-5) (x+6) =0

<=> x-5 = 0 hoặc x+ 6 = 0

<=> x=5 hoặc x = -6

 

 
10 tháng 11 2021

30x2=60

\(x^4-30x^2+31x-30\)

\(=x^4+x-30x^2+30x-30\)

\(=x\left(x^3+1\right)-30\left(x^2-x+1\right)\)

\(=x\left(x+1\right)\left(x^2-x+1\right)-30\left(x^2-x+1\right)\)

\(=\left(x^2+x\right)\left(x^2-x+1\right)-30\left(x^2-x+1\right)\)

\(=\left(x^2-x+1\right)\left(x^2+x-30\right)\)

6 tháng 6 2018

\(x^4-30x^2+31x-30\)

\(=x^4-5x^3+5x^3-25x^2-5x^2+25x+6x-30\)

\(=x^3\left(x-5\right)+5x^2\left(x-5\right)-5x\left(x-5\right)+6\left(x-5\right)\)

\(=\left(x-5\right)\left(x^3+5x^2-5x+6\right)\)

\(=\left(x-5\right)\left(x^3+6x^2-x^2-6x+x+6\right)\)

\(=\left(x-5\right)\left[x^2\left(x+6\right)-x\left(x+6\right)+\left(x+6\right)\right]\)

\(=\left(x-5\right)\left(x+6\right)\left(x^2-x+1\right)\)

14 tháng 12 2016

\(x^4-30x^2+31x-30=0\)

\(\Leftrightarrow x^4+x-30\left(x^2-x+1\right)=0\)

\(\Leftrightarrow x\left(x^3+1\right)-30\left(x^2-x+1\right)=0\)

\(\Leftrightarrow x\left(x+1\right)\left(x^2-x+1\right)-30\left(x^2-x+1\right)=0\)

\(\Leftrightarrow\left(x^2-x+1\right)\left(x^2+x-30\right)=0\)

\(\Leftrightarrow\left(x+6\right)\left(x-5\right)\left(x^2-x+1\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x+6=0\\x-5=0\\x^2-x+1=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-6\\x=5\\\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\left(loai\right)\end{array}\right.\)

Vậy \(S=\left\{-6;5\right\}\)

 

21 tháng 2 2018

pt <=> (x^4+x)-(30x^2-30x+30) = 0

<=> x.(x^3+1)-30.(x^2-x+1) = 0

<=> x.(x+1).(x^2-x+1)-30.(x^2-x+1) = 0

<=> (x^2-x+1).(x^2+x-30) = 0

<=> x^2+x-30 = 0 ( vì x^2-x+1 > 0 )

<=> (x^2-5x)+(6x-30) = 0

<=> (x-5).(x+6) = 0

<=> x-5=0 hoặc x+6=0

<=> x=5 hoặc x=-6

Vậy ..............

Tk mk nha

4 tháng 9 2016

....

Điểm âm của tớ chỉ còn 29 nữa thôi, các bạn giúp mik nha, khi nào hết âm mik sẽ ra câu hỏi và giúp lại các bạn

Mơn các bạn trc~~~~ Và cx mơn các bạn đã giúp mik trong thời gian qua =DD

16 tháng 4 2016

      x4-30x2+31x-30=0

<=>x4+x-30x2+30x-30=0

<=>x(x3+1)-30(x2-x+1)=0

<=>x(x+1)(x2-x+1)-30(x2-x+1)=0

<=>(x2-x+1)(x2+x-30)=0

<=>(x2-x+1)(x2-5x+6x-30)=0

<=>(x2-x+1)[x(x-5)+6(x-5)]=0

<=>(x2-x+1)(x-5)(x+6)=0

Vì x2-x+1=x2-2x.1/2+1/4+3/4=(x-1/2)2+3/4>0 với mọi x

Do đó: <=>x-5 =0    <=> x=5

                x+6=0           x=-6

Vậy phương trình có tập nghiệm là S={5;-6}

31 tháng 10 2018

x^4-30x^2+31x-30=0

<=>x^4+x^2+1-31(x^2-x+1)=0

<=>(x^2-x+1)(x^2+x+1)-31(x^2-x+1)=0

<=>(x^2-x+1)(x^2+x-30)=0

<=>(x^2-x+1)(x^2-6x+5x-30)=0

<=>(x^2-x+1)(x-6)(x+5)=0

Ta có:x^2-x+1=x^2-x+1/4+3/4=(x-1/2)^2+3/4>0 Với mọi x

<=>(x-6)(x+5)=0

<=>x+5=0<=>x=-5

     x-6=0<=>x=6

Vậy x=(5;-6)

4 tháng 1 2019

\(x^4-30x^2+31x-30=0\)

\(\Leftrightarrow x^4+x-30x^2+30x-30=0\)

\(\Leftrightarrow x\left(x^3+1\right)-30\left(x^2-x+1\right)=0\)

\(\Leftrightarrow x\left(x+1\right)\left(x^2-x+1\right)-30\left(x^2-x+1\right)=0\)

\(\Leftrightarrow\left(x^2-x+1\right)\left(x^2+x-30\right)=0\)

\(\Leftrightarrow\left(x^2-x+1\right)\left(x+6\right)\left(x-5\right)=0\)

Ta có: \(x^2-x+1=x^2-2.x.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge0\forall x\in R\)

\(\Rightarrow\left(x-5\right)\left(x+6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-6\end{matrix}\right.\)

Vậy, \(S=\left\{-6;5\right\}\)

x4−30x2+31x−30

=x4+x−30x2+30x−30

=x(x3+1)−30(x2−x+1)

=x(x+1)(x2−x+1)−30(x2−x+1)

=(x2+x)(x2−x+1)−30(x2−x+1)

=(x2−x+1)(x2+x−30)

tự làm tieeps nhé

25 tháng 9 2018

     \(x^4-30x^2+31x-30=0\)

\(\Rightarrow x^4-5x^3+5x^3-25x^2-5x^2+25x+6x-30=0\)

\(\Rightarrow x^3\left(x-5\right)+5x^2\left(x-5\right)-5x\left(x-5\right)+6\left(x-5\right)=0\)

\(\Rightarrow\left(x-5\right)\left(x^3+5x^2-5x+6\right)=0\)

\(\Rightarrow\left(x-5\right)\left[x^3+6x^2-x^2-6x+x+6\right]=0\)

\(\Rightarrow\left(x-5\right)\left[x^2\left(x+6\right)-x\left(x+6\right)+\left(x+6\right)\right]=0\)

\(\Rightarrow\left(x-5\right)\left(x+6\right)\left(x^2-x+1\right)=0\)

Mà \(x^2-x+1=x^2-2.x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)

\(\Rightarrow\orbr{\begin{cases}x-5=0\\x+6=0\end{cases}\Rightarrow\orbr{\begin{cases}x=5\\x=-6\end{cases}}}\)

Chúc bạn học tốt.

3 tháng 1 2018

b, <=> x.(x^2+x-12)=0

<=> x.[(x^2-4x)+(3x-12)]=0

<=> x.(x-4).(x+3)=0

<=> x=0 hoặc x-4=0 hoặc x+3=0

<=> x=0 hoặc x=4 hoặc x=-3

Vậy ..............

k mk nha

3 tháng 1 2018

 Phương trình tích

18 tháng 12 2015

x^4-30x^2+31x-30=0 
<=>(x^4 - 29x^2 + 841/4) - (x^2 - 31x + 31^2/4 ) =0 
<=> (x^2- 29/2)^2 - (x-31/2)^2=0 
(đến đây ta giải phương trình A^2-B^2=0 bằng cách đưa về pt tích (A-B)(A+B)=0 )

tick nha