K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2017

\(x^4-3x^2+x-6=0\Rightarrow x^4-2x^3+2x^3-4x^2+x^2-2x+3x-6=0\)
\(\Rightarrow x^3\left(x-2\right)+2x^2\left(x-2\right)+x\left(x-2\right)+3\left(x-2\right)=0\Rightarrow\left(x-2\right)\left(x^3+2x^2+x+3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2=0\Rightarrow x=2\left(1\right)\\x^3+2x^2+x+3=0\left(2\right)\end{cases}}\)
Áp dụng phương thức giải phương trình bậc 3 vào phương trình (2)( cái này bạn tự tìm trên mạng)
Có \(\Delta_2>0\)=> phương trình có nghiệm duy nhất.
x= \(-\frac{10873}{5000}\)
Vậy phương trình có 2 nghiệm là x=2 và x= -10873/5000

9 tháng 10 2016

a/ Đặt x2 = a thì pt thành

a3 + a- a = o

<=> a(a+ a - 1) = 0

b/ x4 - 3x3 + 4x2 - 3x + 1 = 0

<=> (x- 2x3 + x2) + (- x3 + 2x2 - x) + (x2 - 2x + 1) = 0

<=> (x - 1)2( x2 - x + 1) = 0

<=> x - 1 = 0

<=> x = 1

1: \(sin^6x+cos^6x+3sin^2x\cdot cos^2x\)

\(=\left(sin^2x+cos^2x\right)^2-3\cdot sin^2x\cdot cos^2x\cdot\left(sin^2x+cos^2x\right)+3\cdot sin^2x\cdot cos^2x\)

=1

2: \(sin^4x-cos^4x\)

\(=\left(sin^2x+cos^2x\right)\left(sin^2x-cos^2x\right)\)

\(=1-2\cdot cos^2x\)

 

6 tháng 8 2015

a)x5+x-1=0

<=>(x5+x4+x3+x2+x)-(x4+x3+x2+x+1)=0

<=>(x4+x3+x2+x+1)(x-1)=0

Do x4+x3+x2+x+1>0

=>x+1=0

<=>x=1

a,ta có:(x2+7x+3)2=x4+14x3+55x2+42x+9(8x+4)(x2+5x+2)=8x3+44x2+36x+8=>x4+14x3+55x2+42x+9=8x3+44x2+36x+8<=>x4+6x3+11x2+6x+1=0xét x=0 ko phải no của ptxét x khác 0\(\Leftrightarrow\left(x^2+\frac{1}{x^2}\right)+6\left(x+\frac{1}{x}\right)+11=0\)\(\Leftrightarrow\left(x+\frac{1}{x}\right)^2+6\left(x+\frac{1}{x}\right)+9=0\Leftrightarrow\left(x+\frac{1}{x}+3\right)^2=0\Rightarrow x=\frac{-3+\sqrt{5}}{2};\frac{-3-\sqrt{5}}{2}\)d,xét n=1=> mệnh đề luôn đúnggiả sử mệnh đề...
Đọc tiếp

a,

ta có:

(x2+7x+3)2=x4+14x3+55x2+42x+9

(8x+4)(x2+5x+2)=8x3+44x2+36x+8

=>x4+14x3+55x2+42x+9=8x3+44x2+36x+8

<=>x4+6x3+11x2+6x+1=0

xét x=0 ko phải no của pt

xét x khác 0

\(\Leftrightarrow\left(x^2+\frac{1}{x^2}\right)+6\left(x+\frac{1}{x}\right)+11=0\)

\(\Leftrightarrow\left(x+\frac{1}{x}\right)^2+6\left(x+\frac{1}{x}\right)+9=0\Leftrightarrow\left(x+\frac{1}{x}+3\right)^2=0\Rightarrow x=\frac{-3+\sqrt{5}}{2};\frac{-3-\sqrt{5}}{2}\)

d,

xét n=1=> mệnh đề luôn đúng

giả sử mệnh đề đúng với n=k

ta sẽ cm nó đúng với n=k+1

với n=k+1

=>(n+1)(n+2)..(n+n)=2n(n+1)(n+2)...(2n-1)

=2(k+1)(k+2).....2k chia hết cho 2k+1

=>(n+1)(n+2)(n+3)...(n+n) chia hết cho 2n

c,

ta có:

\(\left(1+x\right)\left(1+\frac{y}{x}\right)=1+x+y+\frac{y}{x}\ge1+y+2\sqrt{y}=\left(\sqrt{y}+1\right)^2\)

\(\Rightarrow\left(1+x\right)\left(1+\frac{y}{x}\right)\left(1+\frac{9}{\sqrt{y}}\right)^2\ge\left[\left(\sqrt{y}+1\right)\left(1+\frac{9}{\sqrt{y}}\right)\right]^2\)

\(=\left(\sqrt{y}+\frac{9}{\sqrt{y}}+10\right)^2\ge\left(6+10\right)^2=256\left(Q.E.D\right)\)

dấu = xảy ra khi y=9;x=3

b,

x7+xy6=y14+y8

<=>(x7-y14)+(xy6-y8)=0

<=>(x-y2)(x+y2)+y6(x-y2)=0

<=>(x-y2)(x+y2+y6)=0

xét x=y2

\(\Rightarrow\sqrt{4x+5}+\sqrt{y^2+8}=\sqrt{4y^2+5}+\sqrt{y^2-1}\)

\(\Rightarrow\sqrt{4y^2+5}+\sqrt{y^2+8}=6\)

\(\Rightarrow\left(\sqrt{4y^2+5}-3\right)+\left(\sqrt{y^2+8}-3\right)=0\)

\(\Rightarrow\frac{4y^2-4}{\sqrt{4y^2+5}+3}+\frac{y^2-1}{\sqrt{y^2+8}+3}=0\)

\(\Rightarrow\left(y^2-1\right)\left(\frac{4}{\sqrt{4y^2+5}+3}+\frac{1}{\sqrt{y^2+8}+3}\right)=0\)

\(\frac{4}{\sqrt{4y^2+5}+3}+\frac{1}{\sqrt{y^2+8}+3}>0\Rightarrow y^2=1\Rightarrow\left(x;y\right)=\left(1;1\right);\left(1;-1\right)\)

xét x+y2+y6=0

<=>x=-y2-y6

lại có:

x7+xy6=y14+y8

<=>x(x6+y6)=y14+y8

<=>-(y2+y6)(x6+y6)=y14+y8

mà \(-\left(y^2+y^6\right)\left(x^6+y^6\right)\le0\le y^{14}+y^8\)

<=>y=0=>x=0(ko thỏa mãn)

vậy nghiệm của pt:(x;y)=(1;-1);(1;1)

1
14 tháng 10 2017

câu hệ sao từ x^7-y^14 sao xuống đc (x-y^2)(x+y^2) ? 

Bài 1:

Ta có: \(\left(2x^2+x-4\right)^2-\left(2x-1\right)^2=0\)

\(\Leftrightarrow\left(2x^2+x-4-2x+1\right)\left(2x^2+x-4+2x-1\right)=0\)

\(\Leftrightarrow\left(2x^2-x-3\right)\left(2x^2+3x-5\right)=0\)

\(\Leftrightarrow\left(2x^2+2x-3x-3\right)\left(2x^2-2x+5x-5\right)=0\)

\(\Leftrightarrow\left[2x\left(x+1\right)-3\left(x+1\right)\right]\left[2x\left(x-1\right)+5\left(x-1\right)\right]=0\)

\(\Leftrightarrow\left(x+1\right)\left(2x-3\right)\left(x-1\right)\left(2x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\2x-3=0\\x-1=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\2x=3\\x=1\\2x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\frac{3}{2}\\x=1\\x=\frac{-5}{2}\end{matrix}\right.\)

Vậy: \(x\in\left\{-1;\frac{3}{2};1;\frac{-5}{2}\right\}\)

29 tháng 4 2020

Còn 3 câu kia đâu bạn?

22 tháng 8 2018

a. Ta có: x2-11=0

⇌ x2=11

\(\left[{}\begin{matrix}x=\sqrt{11}\\x=-\sqrt{11}\end{matrix}\right.\)

b.Ta có: x2-2\(\sqrt{13}\)x+\(\sqrt{13}\)=0

⇌(x-\(\sqrt{13}\))2=0

⇌ x-\(\sqrt{13}\)=0

⇌ x=\(\sqrt{13}\)

c. Ta có : x2-9x+14=0

⇌ (x-7)(x-2)=0

\(\left[{}\begin{matrix}x-7=0\\z-2=0\end{matrix}\right.\)\(\left[{}\begin{matrix}x=7\\x=2\end{matrix}\right.\)

d.Ta có \(\sqrt{x}\)-6=13

\(\sqrt{x}\)=19

⇌x = 361

e.Ta có: \(\sqrt{x}\)+9=3

\(\sqrt{x}\)≥0∀x⇒\(\sqrt{x}\)+9≥9

⇒ ptvn

f.Ta có:\(\sqrt{x^2}\)-2x+4=x-1

⇌ |x|-3x-5=0(*)

TH1: x≥0

⇒ pt(*) ⇌ x-3x+5=0⇌-2x-5=0⇒x=\(\dfrac{5}{2}\)(t/m)

TH2: x<0

⇒ pt(*) ⇌ -x-3x+5=0⇌-4x+5=0⇒x=\(\dfrac{5}{4}\)(l)

Vậy x=\(\dfrac{5}{2}\)là nghiệm của phương trình