Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 3x(x - 1) + 2(x - 1) = 0
<=> (3x + 2)(x - 1) = 0
<=> \(\orbr{\begin{cases}3x+2=0\\x-1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-\frac{2}{3}\\x=1\end{cases}}\)
Vậy S = {-2/3; 1}
b) x2 - 1 - (x + 5)(2 - x) = 0
<=> x2 - 1 - 2x + x2 - 10 + 5x = 0
<=> 2x2 + 3x - 11 = 0
<=> 2(x2 + 3/2x + 9/16 - 97/16) = 0
<=> (x + 3/4)2 - 97/16 = 0
<=> \(\orbr{\begin{cases}x+\frac{3}{4}=\frac{\sqrt{97}}{4}\\x+\frac{3}{4}=-\frac{\sqrt{97}}{4}\end{cases}}\)
<=> \(\orbr{\begin{cases}x=\frac{\sqrt{97}-3}{4}\\x=-\frac{\sqrt{97}-3}{4}\end{cases}}\)
Vậy S = {\(\frac{\sqrt{97}-3}{4}\); \(-\frac{\sqrt{97}-3}{4}\)
d) x(2x - 3) - 4x + 6 = 0
<=> x(2x - 3) - 2(2x - 3) = 0
<=> (x - 2)(2x - 3) = 0
<=> \(\orbr{\begin{cases}x-2=0\\2x-3=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=2\\x=\frac{3}{2}\end{cases}}\)
Vậy S = {2; 3/2}
e) x3 - 1 = x(x - 1)
<=> (x - 1)(x2 + x + 1) - x(x - 1) = 0
<=> (x - 1)(x2 + x + 1 - x) = 0
<=> (x - 1)(x2 + 1) = 0
<=> x - 1 = 0
<=> x = 1
Vậy S = {1}
f) (2x - 5)2 - x2 - 4x - 4 = 0
<=> (2x - 5)2 - (x + 2)2 = 0
<=> (2x - 5 - x - 2)(2x - 5 + x + 2) = 0
<=> (x - 7)(3x - 3) = 0
<=> \(\orbr{\begin{cases}x-7=0\\3x-3=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=7\\x=1\end{cases}}\)
Vậy S = {7; 1}
h) (x - 2)(x2 + 3x - 2) - x3 + 8 = 0
<=> (x - 2)(x2 + 3x - 2) - (x- 2)(x2 + 2x + 4) = 0
<=> (x - 2)(x2 + 3x - 2 - x2 - 2x - 4) = 0
<=> (x - 2)(x - 6) = 0
<=> \(\orbr{\begin{cases}x-2=0\\x-6=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=2\\x=6\end{cases}}\)
Vậy S = {2; 6}
\(a,3x\left(x-1\right)+2\left(x-1\right)=0\)
\(3x.x-3x+2x-2=0\)
\(2x-2=0\)
\(2x=2\)
\(x=1\)
Lời giải:
Ta có:
\(x^4-2x^3+2x^2+4x-8=0\)
\(\Leftrightarrow x^2(x^2-2)-2x(x^2-2)+4(x^2-2)=0\)
\(\Leftrightarrow (x^2-2)(x^2-2x+4)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-2=0\left(1\right)\\x^2-2x+4=0\left(2\right)\end{matrix}\right.\)
(1) \(\Leftrightarrow x^2-2=0\Leftrightarrow x=\pm \sqrt{2}\)
(2)\(\Leftrightarrow x^2-2x+4=0\Leftrightarrow (x-1)^2+3=0\)
(vô lý vì \((x-1)^2+3\geq 3>0\forall x\in\mathbb{R}\) )
Vậy \(x=\pm \sqrt{2}\)
=> x3.x - 2xx2 + 2xx + 4x - 8 = 0
=> x( x^3 - 2x^2 + 2x + 4 ) - 8 = 0
=> x( xx^2 - 2xx + 2x + 4 ) = 8
=> x[ x( x^2 - 2x + 2 ) + 4 ] = 8
=> x{ x[ x( x - 2 ) + 2 ] + 4 } = 8
P/s : Không biết nữa , làm đại
\(x^4-2x^3+2x^2+4x-8=0\)
\(\Leftrightarrow\left(x^4-2x^2\right)+\left(-2x^3+4x\right)+\left(4x^2-8\right)=0\)
\(\Leftrightarrow\left(x^2-2\right)\left(x^2-2x+4\right)=0\)
\(\Leftrightarrow x=\pm\sqrt{2}\)
\(\left(4x-5\right)\left(2x-3\right)\left(x-1\right)=9\)
\(\Leftrightarrow\left[{}\begin{matrix}4x-5=9\\2x-3=9\\x-1=9\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3,5\\x=6\\x=10\end{matrix}\right.\)
Vậy \(x=\left\{3,5;6;10\right\}\)
d: Sửa đề: \(\left(4x-5\right)^2\cdot\left(2x-3\right)\left(x-1\right)=9\)
a: \(\Leftrightarrow\left(2x^2+x\right)^2-3\left(2x^2+x\right)-\left(2x^2+x\right)+3=0\)
\(\Leftrightarrow\left(2x^2+x\right)\left(2x^2+x-3\right)-\left(2x^2+x-3\right)=0\)
\(\Leftrightarrow\left(2x^2+x-3\right)\left(2x^2+x-1\right)=0\)
\(\Leftrightarrow\left(2x^2+3x-2x-3\right)\left(2x^2+2x-x-1\right)=0\)
\(\Leftrightarrow\left(2x+3\right)\left(x-1\right)\left(x+1\right)\left(2x-1\right)=0\)
hay \(x\in\left\{-\dfrac{3}{2};1;-1;\dfrac{1}{2}\right\}\)
a, \(2\left(x+3\right)\left(x-4\right)=\left(2x-1\right)\left(x+2\right)-27\)
\(\Leftrightarrow2\left(x^2-4x+3x-12\right)=2x^2+4x-x-2-27\)
\(\Leftrightarrow2x^2-2x-24=2x^2+3x-29\Leftrightarrow-5x+5=0\Leftrightarrow x=1\)
b, \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x-3\right)\left(x+3\right)=26\)
\(\Leftrightarrow x^3-8-x\left(x^2-9\right)=26\Leftrightarrow-8+9x=26\)
\(\Leftrightarrow9x=18\Leftrightarrow x=2\)