Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3. ( 22 + 1 ).( 24 + 1 ).( 28 + 1 )......( 264 + 1 ) + 1
= ( 22 - 1 ).( 22 + 1 ).( 24 + 1 ).( 28 + 1 )....( 264 + 1 ) + 1
= ( 24 - 1 ).( 24 + 1 ).( 28 + 1 )......( 264 + 1 ) + 1
= ( 28 + 1 ).....( 264 + 1 ) + 1
= ( 264 - 1 ).( 264 + 1 ) + 1
= 2128 - 1 + 1
= 2128
8.( 32 + 1 ).( 34 + 1 ).( 38 + 1 )....( 3128 + 1 ) + 1
= ( 32 - 1 ).( 32 + 1 ).( 34 + 1 ).( 38 + 1 )....( 3128 + 1 ) + 1
= ( 34 - 1 ).( 34 + 1 ).( 38 + 1 )....( 3128 + 1 ) + 1
= ( 38 - 1 ).( 38 + 1 )....( 3128 + 1 ) + 1
= ( 316 - 1 )......( 3128 + 1 ) + 1
= ( 3128 - 1 ).( 3128 + 1 ) + 1
= 3256 - 1 + 1
= 3256
b, \(x^2-6x-2=x^2-6x+9-11=\left(x-3\right)^2-\sqrt{11}^2\)
\(=\left(x-3-\sqrt{11}\right)\left(x-3+\sqrt{11}\right)\)
c,\(9x^2+6x-1=\left(3x\right)^2+2.3x+1-2=\left(3x+1\right)^2-\sqrt{2}^2\)
\(=\left(3x+1-\sqrt{2}\right)\left(3x+1+\sqrt{2}\right)\)
d,\(x^8+64=\left(x^4\right)^2+8^2+16x^4-16x^4\)
\(=\left(x^4+8\right)^2-\left(4x^2\right)^2=\left(x^4+4x^2+8\right)\left(x^4-4x^2+8\right)\)
e,\(81x^4+4=\left(9x^2\right)^2+2^2+36x^2-36x^2=\left(9x^2+2\right)^2-\left(6x\right)^2\)
\(=\left(9x^2+2-6x\right)\left(9x^2+6x+2\right)\)
g,\(x^8+x^7+1\)
\(=\left(x^8+x^7+x^6\right)+\left(x^5+x^4+x^3\right)+\left(x^2+x+1\right)-\left(x^6+x^5+x^4\right)-\left(x^3+x^2+x\right)\)
\(=x^6\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)+\left(x^2+x+1\right)-x^4\left(x^2+x+1\right)-x\left(x^2+x+1\right)\)\(\left(x^2+x+1\right)\left(x^6-x^4+x^3-x+1\right)\)
1)x2-8x-9
= x^2 - 9x +x -9
= x(x+1) - 9 (x+1)
= (x-9) (x+1)
2)x2+3x-18
3)x3-5x2+4x
=x^3 - 4x^2 - x^2 + 4x
= x^2 (x-1) - 4x(x-1)
= (x^2 - 4x) (x-1)
= x(x-4)(x-1)
4)x3-11x2+30x
5)x3-7x-6
6)x16-64
\(=\left(x^8\right)^2-8^2\)
\(=\left(x^8-8\right)\left(x^8+8\right)\)
7)x3-5x2+8x-4
8)x2-3x+2
= x^2 - 2x - x +2
= x(x-1) -2(x-1)
= (x-2)(x-1)
1) \(\left(x-9\right)\left(x+1\right)\) 2) \(\left(x-3\right)\left(x+6\right)\) 3) \(x\left(x-4\right)\left(x-1\right)\)
4) \(x\left(x-6\right)\left(x-5\right)\) 5)\(\left(x-3\right)\left(x+1\right)\left(x+2\right)\) 6) ........
7) \(\left(x-1\right)\left(x-2\right)\left(x-2\right)\) 8) \(\left(x-2\right)\left(x-1\right)\)
\(\left(x-2\right)\left(x+2\right)\left(x^2+2^2\right)\left(x^4+2^4\right)\left(x^8+2^8\right)-x^{16}\)
\(=\left(x^2-2^2\right)\left(x^2+2^2\right)\left(x^4+2^4\right)\left(x^8+2^8\right)-x^{16}\)
\(=\left(x^4-2^4\right)\left(x^4+2^4\right)\left(x^8+2^8\right)-x^{16}\)
\(=\left(x^8-2^8\right)\left(x^8+2^8\right)-x^{16}\)
\(=\left(x^{16}-2^{16}\right)-x^{16}\)
\(=x^{16}-2^{16}-x^{16}\)
\(\left(-2\right)^{16}=65536\)
1. \(125x^3+y^6=\left(5x\right)^3+\left(y^2\right)^3\)
\(=\left(5x+y^2\right)\left[\left(5x\right)^2-5x.y^2+\left(y^2\right)^2\right]\)
\(=\left(5x+y^2\right)\left(25x^2-5xy^2+y^4\right)\)
2. \(4x\left(x-2y\right)+8y\left(2y-x\right)\)
\(=4x\left(x-2y\right)-8y\left(x-2y\right)\)
\(=\left(x-2y\right)\left(4x-8y\right)\)
3. \(25\left(x-y\right)^2-16\left(x+y\right)^2\)
\(=\left[5\left(x-y\right)\right]^2-\left[4\left(x+y\right)\right]^2\)
\(=\left[5\left(x-y\right)-4\left(x+y\right)\right]\left[5\left(x-y\right)+4\left(x+y\right)\right]\)
\(=\left(5x-5y-4x-4y\right)\left(5x-5y+4x+4y\right)\)
\(=\left(x-9y\right)\left(9x-y\right)\)
4. \(x^4-x^3-x^2+1\)
\(=x^3\left(x-1\right)-\left(x^2-1\right)\)
\(=x^3\left(x-1\right)-\left(x-1\right)\left(x+1\right)\)
\(=\left(x-1\right)\left(x^3-x-1\right)\)
5. \(a^3x-ab+b-x\)
\(=a^3x-x-ab+b\)
\(=x\left(a^3-1\right)-b\left(a-1\right)\)
\(=x\left(a-1\right)\left(a^2+a+1\right)-b\left(a-1\right)\)
\(=\left(a-1\right)\left[x\left(a^2+a+1\right)-b\right]\)
6. \(x^3-64=x^3-4^3\)
\(=\left(x-4\right)\left(x^2+4x+16\right)\)
7. \(0,125\left(a+1\right)^3-1\)
\(=\left[0,5\left(a+1\right)\right]^3-1^3\)
\(=\left[0,5\left(a+1\right)-1\right]\left\{\left[0,5\left(a+1\right)\right]^2+\left[0,5\left(a+1\right).1\right]+1^2\right\}\)
\(=\left[0,5\left(a+1-2\right)\right]\left[0,25a^2+0,5a+0,25+0,5a+0,5+1\right]\)
\(=\left[0,5\left(a-1\right)\right]\left(0,25a^2+a+1,75\right)\)
8. \(9\left(x+5\right)^2-\left(x-7\right)^2\)
\(=\left[3\left(x+5\right)\right]^2-\left(x-7\right)^2\)
\(=\left(3x+15-x+7\right)\left(3x+15+x-7\right)\)
\(=\left(2x+22\right)\left(4x+8\right)\)
9. \(49\left(y-4\right)^2-9\left(y+2\right)^2\)
\(=\left[7\left(y-4\right)\right]^2-\left[3\left(y+2\right)\right]^2\)
\(=\left(7y-28-3y-6\right)\left(7y-28+3y+6\right)\)
\(=\left(4y-34\right)\left(10y-22\right)\)
10. \(x^2y+xy^2-x-y=xy\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(xy-1\right)\)
11. \(x^3+3x^2+3x+1-27z^3\)
\(=\left(x+1\right)^3-\left(3z\right)^3\)
\(=\left(x+1-3z\right)\left(x^2+2x+1+3xz+3z+9z^2\right)\)
12. \(x^2-y^2-x+y=\left(x-y\right)\left(x+y\right)-\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y-1\right)\)
a) x^4 - 2x^2 + 1 = 0
=> ( x^2 - 1 )^2 = 0
=> x^2 - 1 = 0
=> x^2 = 1
=> x = 1 hoặc x = -1
a) x4-2x2+1=0
(thang Tran giải rồi nhé)
b) x4-2x2-8=0
<=> x^4 - 2x^2 +1 -9 =0
<=> (x^2 -1)^2 -9 =0
\(\Leftrightarrow\orbr{\begin{cases}x^2-1=-3\\x^2-1=3\end{cases}\Leftrightarrow\orbr{\begin{cases}x^2=-2\left(VN\right)\\x=+_-\sqrt{2}\end{cases}}}\)
Vậy x=+- căn 2
c) x4-4x2-60=0
\(\Leftrightarrow x^4-4x^2+4-64=0\)
\(\Leftrightarrow\left(x^2-2\right)-64=0\)
\(\Leftrightarrow\left(x^2+62\right)\left(x^2-66\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+62=0\\x^2-66=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x^2=-62\left(VN\right)\\x^2=+_-\sqrt{66}\end{cases}}}\)
Vậy x=+- căn 66
d) x6-16x2+64=0
\(x^4-16=\left(x^2\right)^2-4^2=\left(x^2-4\right)\left(x^2+4\right)=\left(x-2\right)\left(x+2\right)\left(x^2+4\right)\)
\(x^2-64=x^2-8^2=\left(x-8\right)\left(x+8\right)\)
\(x^4-16=\left(x^2\right)^2-4^2=\left(x^2-4\right)\left(x^2+4\right)=\left(x-2\right)\left(x+2\right)\left(x^2+4\right)\\ x^2-64=x^2-8^2=\left(x-8\right)\left(x+8\right)\)