K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2020

ai do giup mk vs 

15 tháng 10 2020

\(VT=\frac{x^4}{xyz}+\frac{y^4}{xyz}+\frac{z^4}{xyz}\ge\frac{\left(x^2+y^2+z^2\right)^2}{3xyz}\ge\frac{\left(\frac{\left(x+y+z\right)^2}{3}\right)^2}{\frac{\left(x+y+z\right)^3}{9}}=\frac{\left(x+y+z\right)^4}{\left(x+y+z\right)^3}=x+y+z\)

Đẳng thức xảy ra khi x = y = z

6 tháng 3 2018

+Cộng 1 vào 2 vế của 3 pt ta được:
(x+1)(y+1)=2
(y+1)(z+1)=4
(z+1)(x+1)=8
Nhân hết 2 phương trình bất kỳ rồi chia cho cái còn lại ta được:
\(\left(x+1\right)^2=\dfrac{2.8}{4}=4\);\(\left(y+1\right)^2=\dfrac{2.4}{8}=1\);\(\left(z+1\right)^2=\dfrac{4.8}{2}=16\)
Do x;y;z không âm nên x= 1; y= 0; z= 3

\(=>A=1+0+3=4\)

NV
6 tháng 4 2019

\(\frac{x^3}{y}+xy\ge2x^2\); \(\frac{y^3}{z}+yz\ge2y^2\); \(\frac{z^3}{x}+xz\ge2z^2\)

\(\Rightarrow\frac{x^3}{y}+\frac{y^3}{z}+\frac{z^3}{x}+xy+xz+yz\ge2\left(x^2+y^2+z^2\right)\)

Mặt khác ta có BĐT: \(x^2+y^2+z^2\ge xy+xz+yz\)

\(\Rightarrow\frac{x^3}{y}+\frac{y^3}{z}+\frac{z^3}{x}+xy+xz+yz\ge2\left(xy+xz+yz\right)\)

\(\Rightarrow\frac{x^3}{y}+\frac{y^3}{z}+\frac{z^3}{x}\ge xy+xz+yz\) (đpcm)

Dấu "=" xảy ra khi \(x=y=z\)

AH
Akai Haruma
Giáo viên
23 tháng 8 2017

Lời giải:

Ta có: \(\left\{\begin{matrix} xy+x+y=3\\ yz+y+z=8\\ zx+z+x=15\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} (x+1)(y+1)=4\\ (y+1)(z+1)=9\\ (z+1)(x+1)=16\end{matrix}\right.(1)\)

Nhân 3 vế với nhau:

\(\Rightarrow [(x+1)(y+1)(z+1)]^2=4.9.16\)

\(\Leftrightarrow (x+1)(y+1)(z+1)=\pm 24\)

Nếu \((x+1)(y+1)(z+1)=24(2)\)

Từ \((1),(2)\Rightarrow \left\{\begin{matrix} z+1=6\\ x+1=\frac{8}{3}\\ y+1=\frac{3}{2}\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x=\frac{5}{3}\\ y=\frac{1}{2}\\ z=5\end{matrix}\right.\)

Do đó, \(P=x+y+z=\frac{43}{6}\)

Nếu 

\((x+1)(y+1)(z+1)=-24(3)\)

Từ $(1);(3)$ suy ra \(\left\{\begin{matrix} z+1=-6\\ x+1=\frac{-8}{3}\\ y+1=\frac{-3}{2}\end{matrix}\right.\Rightarrow \left\{\begin{matrix} z=-7\\ x=-\frac{11}{3}\\ y=\frac{-5}{2}\end{matrix}\right.\)

Do đó, \(P=x+y+z=-\frac{79}{6}\)

 

14 tháng 4 2018

Thưa thầy. Hình như phải xét 2 trường hợp chứ ạ?

5 tháng 6 2019

#)Góp ý :

   Mời bạn tham khảo :

   http://diendantoanhoc.net/topic/160455-%C4%91%E1%BB%81-to%C3%A1n-v%C3%B2ng-2-tuy%E1%BB%83n-sinh-10-chuy%C3%AAn-b%C3%ACnh-thu%E1%BA%ADn-2016-2017/

   Mình sẽ gửi link này về chat riêng cho bạn !

6 tháng 6 2019

Tham khảo qua đây nè :

http://diendantoanhoc.net/topic/160455-%C4%91%E1%BB%81-to%C3%A1n-v%C3%B2ng-2-tuy%E1%BB%83n-sinh-10-chuy%C3%Ân-b%C3%ACnh-thu%E1%BA%ADn-2016-2017

tk cho mk nhé

C
17 tháng 9 2019

-Ta có:

xy + x + y = 3                 ( x + 1 )( y + 1 ) = 4

yz + y + z = 8      <=>     ( y + 1 )( z + 1 ) = 9        (1)

xz +x + z = 15                 ( z + 1)( x + 1 ) = 16

Nhân cả 3 vế với nhau, ta được:

\(\left[\left(x+1\right)\left(y+1\right)\left(z+1\right)^2\right]\) = 4.9.16

=> (x+1)(y+1)(z+1) \(\pm24\)

-TH1: Xét (x+1)(y+1)(z+1) = 24 (2)

Từ (1) và (2) suy ra:

=> z+1 = 6                             x = \(\frac{5}{3}\)

     x+1=\(\frac{8}{3}\)        <=>           y = \(\frac{1}{2}\)

     y+1 = \(\frac{3}{2}\)                      z = 5

Do đó P = x+y+z = \(\frac{5}{3}+\frac{1}{2}+5=\frac{43}{6}\)

-TH2: Xét (x+1)(y+1)(z+1) = -24 (3)

Từ (1)(3) suy ra:

=> z + 1 = -6                           z = -7

     x + 1 = \(\frac{-8}{3}\)      <=>     x = \(\frac{-11}{3}\)

     y + 1 = \(-\frac{3}{2}\)                y = \(\frac{-5}{2}\)

Do đó P = x+y+z =\(-7+\left(-\frac{11}{3}\right)+\left(-\frac{5}{2}\right)=-\frac{79}{6}\)

24 tháng 7 2017

Cái đề thiếu x, y, z dương bạn nhé

Với mọi x, y, z > 0 ta luôn có

\(x^3+y^3\ge x^2y+xy^2\)    (1)

\(\Leftrightarrow\left(x^3-x^2y\right)+\left(y^3-xy^2\right)\ge0\)

\(\Leftrightarrow x^2\left(x-y\right)+y^2\left(x-y\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)\left(x^2-y^2\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\ge0\)   (luôn đúng)

Tương tự  \(y^3+z^3\ge y^2z+yz^2\)   (2)  và   \(z^3+x^3\ge z^2x+zx^2\)   (3)

Cộng (1), (2), (3) vế theo vế ta được  \(x^2y+xy^2+y^2z+yz^2+z^2x+zx^2\le2\left(x^3+y^3+z^3\right)\)

Theo BĐT Cauchy-Schwarz, ta có

\(VT=\frac{x^6}{x^3+x^2y+xy^2}+\frac{y^6}{y^3+y^2z+yz^2}+\frac{z^6}{z^3+z^2x+zx^2}\)

\(\ge\frac{\left(x^3+y^3+z^3\right)^2}{\left(x^3+y^3+z^3\right)+\left(x^2y+xy^2+y^2z+yz^2+z^2x+zx^2\right)}\ge\frac{\left(x^3+y^3+z^3\right)^2}{\left(x^3+y^3+z^3\right)+2\left(x^3+y^3+z^3\right)}\)

\(=\frac{\left(x^3+y^3+z^3\right)^2}{3\left(x^3+y^3+z^3\right)}=\frac{x^3+y^3+z^3}{3}\)

Đẳng thức xảy ra \(\Leftrightarrow x=y=z\)

25 tháng 7 2017

x, y, z là số thực anh ơi

5 tháng 7 2015

Chứng minh một số bất đẳng thức phụ:

1. \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\Rightarrow x^2+y^2+z^2\ge xy+yz+zx\ge3\)

2. \(2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+zx\right)\text{ (vừa chứng minh ở trên)}\)

\(\Rightarrow3\left(x^2+y^2+z^2\right)\ge x^2+y^2+z^2+2\left(xy+yz+zx\right)=\left(x+y+z\right)^2\)

3. \(x^2+y^2+z^2\ge xy+yz+zx\Rightarrow x^2+y^2+z^2+2\left(xy+yz+zx\right)\ge3\left(xy+y+zx\right)\)

\(\Rightarrow\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)

\(\Rightarrow x+y+z\ge\sqrt{3\left(xy+yz+zx\right)}\ge\sqrt{3.3}=3\)

Áp dụng BĐT Cauchy-Schwarz:

\(\frac{x^4}{y+3z}+\frac{y^4}{z+3x}+\frac{z^4}{x+3y}\ge\frac{\left(x^2+y^2+z^2\right)^2}{y+3z+z+3x+x+3y}=\frac{\left(x^2+y^2+z^2\right)\left(x^2+y^2+z^2\right)}{4\left(x+y+z\right)}\)

\(\ge\frac{3.\frac{1}{3}\left(x+y+z\right)^2}{4\left(x+y+z\right)}=\frac{x+y+z}{4}\ge\frac{3}{4}\)

Dấu "=" xảy ra khi và chỉ khi x = y = z = 1.

5 tháng 7 2015

C2: Áp dụng Co6si:

\(\frac{x^4}{y+3z}+\frac{y+3z}{16}+\frac{1}{4}+\frac{1}{4}\ge4\sqrt[4]{\frac{x^4}{y+3z}.\frac{y+3z}{16}.\frac{1}{4}.\frac{1}{4}}=x\)

\(\Rightarrow\frac{x^4}{y+3z}\ge x-\frac{y+3z}{16}-\frac{1}{2}\)

Tương tự \(\frac{y^4}{z+3x}\ge y-\frac{z+3x}{16}-\frac{1}{2};\frac{z^4}{x+3y}\ge z-\frac{x+3y}{16}-\frac{1}{2}\)

\(\Rightarrow\frac{x^4}{y+3z}+\frac{y^4}{z+3x}+\frac{z^4}{x+3y}\ge\frac{3}{4}\left(x+y+z\right)-\frac{3}{2}\ge\frac{3}{4}.3-\frac{3}{2}=\frac{3}{4}\)

(\(\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)\ge xy+yz+zx+2\left(xy+yz+zx\right)\)

\(=3\left(xy+yz+zy\right)\ge9\)

\(\Rightarrow x+y+z\ge3\))

Dấu "=" xảy ra khi x = y = z = 1.