
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Đặt \(x^3=a,y^3=b,z^3=c\Rightarrow abc=1\)
\(P=\dfrac{a^3+b^3}{a^2+ab+b^2}+\dfrac{b^3+c^3}{b^2+bc+c^2}+\dfrac{c^3+a^3}{c^2+ca+a^2}\)
Ta chứng minh bổ đề sau
\(\dfrac{a^3+b^3}{a^2+ab+b^2}\ge\dfrac{a+b}{3}\)
\(\Leftrightarrow3\left(a^3+b^3\right)\ge\left(a+b\right)\left(a^2+ab+b^2\right)\)
\(\Leftrightarrow3\left(a^3+b^3\right)\ge a^3+2ab^2+2a^2b+b^3\)
\(\Leftrightarrow a^3+b^3\ge ab\left(a+b\right)\)
\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2\ge0\)
Bất đẳng thức cuối luôn đúng. Sử dụng bổ đề ta được
\(P\ge\dfrac{a+b}{3}+\dfrac{b+c}{3}+\dfrac{c+a}{3}=\dfrac{2\left(a+b+c\right)}{3}\ge\dfrac{2.3\sqrt[3]{abc}}{3}=2\)


a: \(\Leftrightarrow\left\{{}\begin{matrix}4x+10y=6\\15x-10y=-40\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{34}{19}\\y=\dfrac{25}{19}\end{matrix}\right.\)
b: x+3y=5 và 2x-5y=-1
=>2x+6y=10 và 2x-5y=-1
=>11y=11 và x+3y=5
=>y=1 và x=2
c: 3x-4y=18 và 2x+y=1
=>3x-4y=18 và 8x+4y=4
=>11x=22 và 2x+y=1
=>x=2 và y=1-2*2=-3


a, Hoành độ giao điểm d1 ; d2 thỏa mãn phương trình
\(3x+1=-x\Leftrightarrow4x+1=0\Leftrightarrow x=-\frac{1}{4}\)
\(\Rightarrow y=-\frac{3}{4}+1=\frac{1}{4}\)
Vậy d1 cắt d2 tại A(-1/4;1/4)
Để 3 điểm đồng quy khi d3 cắt A(-1/4;1/4) <=> \(\frac{1}{4}=-\frac{1}{4}+\frac{1}{2}\)( đúng )
Vậy 3 điểm đồng quy
b, d1 : \(y=1-x\)
Hoành độ giao điểm d1 ; d2 thỏa mãn phương trình
\(1-x=3x+5\Leftrightarrow4x=-4\Leftrightarrow x=-1\)
\(\Rightarrow y=-3+5=2\)
Vậy d1 cắt d2 tại T(-1;2)
Để 3 điểm đồng quy khi d3 cắt T(-1;2) <=> \(-1-\frac{2}{3}+\frac{5}{3}=0\)( luôn đúng )
Vậy 3 điểm đồng quy

a) \(\left\{{}\begin{matrix}3x-4y=-2\\2x+y=6\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}3x-4y=-2\\8x+4y=24\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}11x=22\\3x-4y=-2\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
a: =>3x-4y=-2 và 8x+4y=24
=>11x=22 và 2x+y=6
=>x=2 và y=6-2x=6-2*2=2
b: 2x-y=0 và 3x+y=4
=>5x=4 và y=2x
=>x=4/5 và y=8/5
c: x+3y=-2 và x-y=-1
=>4y=-1 và x=y-1
=>y=-1/4 và x=-1/4-1=-5/4
d: x+y=3 và 4x-3y=-2
=>4x+4y=12 và 4x-3y=-2
=>7y=14 và x+y=3
=>y=2 và x=1