K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

x-2-1012
y41014

 

HQ
Hà Quang Minh
Giáo viên
11 tháng 9 2023

Ta có bảng sau:

\(x\)

–2

–1

0

1

2

\(y\)

4

1

0

1

4

11 tháng 9 2023

Đồ thị hàm số là tập hợp các điểm có tọa độ \(\left( { - 2;2} \right);\left( { - 1;1} \right);\left( {0;0} \right);\left( {1; - 1} \right);\left( {2; - 2} \right)\) được vẽ trên mặt phẳng tọa độ như hình dưới đây:

a: Xét tứ giác DIHK có

góc DIH=góc DKH=góc KDI=90 độ

nên DIHK là hình chữ nhật

b: Xét tứ giác IHAK có

IH//AK

IH=AK

Do đó: IHAK là hình bình hành

=>B là trung điểm chung của IA và HK

Xét ΔIKA có IC/IK=IB/IA

nên BC//KA

Xét ΔIDA có IB/IA=IM/ID

nên BM//DA

=>B,C,M thẳng hàng

22 tháng 8 2020

a) \(A=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)

\(=x^2+2x+y^2-2y-2xy+37\)

\(=\left(x^2-2xy+y^2\right)+\left(2x-2y\right)+37\)

\(=\left(x-y\right)^2+2\left(x-y\right)+37\)

Thay \(x-y=7\)vào biểu thức ta được: 

\(A=7^2+2.7+37=49+14+37=100\)

b) Ta có: \(x+y=3\)\(\Rightarrow\left(x+y\right)^2=9\)\(\Rightarrow x^2+y^2+2xy=9\)

mà \(x^2+y^2=5\)\(\Rightarrow5+2xy=9\)

\(\Rightarrow2xy=4\)\(\Rightarrow xy=2\)

Vậy \(xy=2\)

22 tháng 8 2020

a) A = x( x + 2 ) + y( y - 2 ) - 2xy + 37

= x2 + 2x + y2 - 2y - 2xy + 37

= ( x2 - 2xy + y2 ) + ( 2x - 2y ) + 37

= ( x - y )2 + 2( x - y ) + 37

Thế x - y = 7 vào A ta được :

A = 72 + 2.7 + 37 = 49 + 14 + 37 = 100

Vậy A = 100 khi x - y = 7

b) x + y = 3 => ( x + y )2 = 9

=> x2 + 2xy + y2 = 9

=> 5 + 2xy = 9 ( sử dụng gt x2 + y2 = 5 )

=> 2xy = 4

=> xy = 2 

HQ
Hà Quang Minh
Giáo viên
11 tháng 1 2024

Xét tứ giác ABCD có:

\(\begin{array}{l} \widehat A  + \widehat  B + \widehat C  + \widehat  D  = {360^0}\\{85^0} + x + {65^0} + {75^0} = {360^0}\\x = {360^0} - {85^0} - {65^0} - {75^0} = {135^0}\end{array}\)

HQ
Hà Quang Minh
Giáo viên
13 tháng 1 2024

Trong Hình 4.23 có \(\widehat {DME} = \widehat {MEF}\) nên EM là tia phân giác của \(\widehat {{\rm{DEF}}}\).

Áp dụng tính chất đường phân giác của tam giác, ta có:

\(\dfrac{{E{\rm{D}}}}{{EF}} = \dfrac{{M{\rm{D}}}}{{MF}}\) hay \(\dfrac{{4,5}}{x} = \dfrac{{3,5}}{{5,6}}\)

Suy ra: \(x = \dfrac{{5,6.4,5}}{{3,5}} = 7,2\)(đvđd)

Vậy x = 7,2 (đvđd).

QT
Quoc Tran Anh Le
Giáo viên
14 tháng 1 2024

a) Dùng Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 trong công cụ Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 để kiểm tra DE, ta thấy độ dài đoạn thẳng DE bằng 4 cm.

Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

b) Lưu hình vẽ ở HĐ3 thành tệp hth.png.

Vào Hồ sơ → Chọn Xuất bản → Chọn PNG image (.png).

Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

Trên màn hình hiện lên cửa sổ như sau:

Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

Ta đổi tên tệp thành hbh (như hình vẽ), sau đó chọn xuất bản.

Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

c) Vẽ hình thang cân ADEC có AD // EC, AD = 6 cm, CE = 4 cm, AC = DE = 3 cm theo các bước sau:

Bước 1. Vẽ đoạn thẳng AB và có độ dài bằng AD – EC = 2 cm tương tự như Bước 1 của HĐ1.

Bước 2. Vẽ tam giác ABC có BC = 3 cm (độ dài của DE), AC = 3 cm.

Chọn công cụ Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Chọn Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Nháy chuột vào điểm A, nhập bán kính bằng 3.

Chọn công cụ Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Chọn Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8  → Nháy chuột vào điểm B, nhập bán kính bằng 3.

Chọn công cụ Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Chọn Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 →  Lần lượt nháy chuột vào hai đường tròn vừa vẽ, ta được 2 giao điểm, chọn 1 điểm là điểm C.

Chọn công cụ Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Chọn Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 →  Chọn điểm A → Chọn điểm C.

 Chọn công cụ Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Chọn Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 →  Chọn điểm B → Chọn điểm C.

Bước 3. Vẽ điểm D nằm trên tia AB sao cho AD = 6 cm.

Chọn công cụ Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Chọn Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 →  Nháy chuột vào điểm A, nhập bán kính bằng 6.

Chọn công cụ Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Chọn Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Nháy chuột lần lượt vào các điểm A, B.

Chọn công cụ Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Chọn Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 →  Lần lượt nháy chuột vào tia AB và đường tròn vừa vẽ, ta được điểm D.

Bước 4. Vẽ điểm E sao cho DE // BC và CE // AB.

Chọn công cụ Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Chọn Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Nháy chuột vào điểm C → Nháy chuột vào đoạn thẳng AB.

Chọn công cụ Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Chọn Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Nháy chuột vào điểm D → Nháy chuột vào đoạn thẳng CB.

Chọn công cụ Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Chọn Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Lần lượt nháy chuột vào đường thẳng vừa vẽ.

Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

Ẩn các đường tròn, các đường thẳng, đoạn thẳng AB, BC và điểm B. Chọn công cụ Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 để nối A với D, D với E, E với C và thu được hình thang cân ADEC thỏa mãn yêu cầu đề bài.

Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8