Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2}{x-2}-\frac{3}{x+2}=\frac{x+1}{x^2-4}\left(x\ne\pm2\right)\)
\(\Leftrightarrow\frac{2}{x-2}-\frac{3}{x+2}-\frac{x+1}{x^2-4}=0\)
\(\Leftrightarrow\frac{2}{x-2}-\frac{3}{x+2}-\frac{x+1}{\left(x-2\right)\left(x+2\right)}=0\)
\(\Leftrightarrow\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{3\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{x+1}{\left(x-2\right)\left(x+2\right)}=0\)
\(\Leftrightarrow\frac{2x+4-3x+6-x-1}{\left(x-2\right)\left(x+2\right)}=0\)
\(\Leftrightarrow\frac{-2x-9}{\left(x-2\right)\left(x+2\right)}=0\)
=> -2x-9=0
<=> -2x=9
<=> \(x=\frac{-9}{2}\left(tmđk\right)\)
`@` `\text {Ans}`
`\downarrow`
`(8x-3)(3x+2)-(4x+7)(x+4)=(2x+1)(5x-1)-33`
`\Leftrightarrow 8x(3x+2) -3(3x+2) - 4x(x+4) + 7(x+4) = 2x(5x-1) + 5x-1 - 33`
`\Leftrightarrow 24x^2 + 16x - 9x - 6 - 4x^2 - 16x - 7x - 28 = 10x^2 - 2x + 5x - 1 - 33`
`\Leftrightarrow 20x^2 -16x - 34 = 10x^2 + 3x - 34`
`\Leftrightarrow 20x^2 - 16x - 34 - 10x^2 - 3x + 34 = 0`
`\Leftrightarrow 10x^2 - 19x = 0`
`\Leftrightarrow x(10x - 19)=0`
`\Leftrightarrow `\(\left[{}\begin{matrix}x=0\\10x-19=0\end{matrix}\right.\)
`\Leftrightarrow `\(\left[{}\begin{matrix}x=0\\10x=19\end{matrix}\right.\)
`\Leftrightarrow `\(\left[{}\begin{matrix}x=0\\x=\dfrac{19}{10}\end{matrix}\right.\)
Vậy, `x={0; 19/10}.`
a: =>3x+3=4x-4
=>-x=-7
hay x=7(nhận)
b: (x-1)(x-3)=0
=>x-1=0 hoặc x-3=0
=>x=1 hoặc x=3
c: 2(x-1)+x=0
=>2x-2+x=0
=>3x-2=0
hay x=2/3
a, ĐKXĐ : x ≠ 1 ; x ≠ -1
\(\Rightarrow3\left(x+1\right)=4\left(x-1\right)\)
\(\Leftrightarrow3x+3=4x-4\)
\(\Leftrightarrow-x=-7\)
\(\Leftrightarrow x=7\left(N\right)\)
b,
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
c,
\(\Leftrightarrow2x-2+x=0\)
\(\Leftrightarrow3x=2\)
\(\Leftrightarrow x=\dfrac{2}{3}\)
\(\dfrac{x-1}{x-3}>1\left(x\ne3\right)\)
\(\Leftrightarrow\dfrac{x-1-x+3}{x-3}>0\)
\(\Leftrightarrow2>0\)
Vậy \(S=\left\{2\right\}\)
-ĐKXĐ: \(x\ne3\)
\(\dfrac{x-1}{x-3}>1\)
\(\Leftrightarrow\dfrac{x-1}{x-3}-\dfrac{x-3}{x-3}>0\)
\(\Leftrightarrow\dfrac{x-1-x+3}{x-3}>0\)
\(\Leftrightarrow\dfrac{2}{x-3}>0\)
\(\Leftrightarrow x-3>0\)
\(\Leftrightarrow x>3\)
-Vậy tập nghiệm của BĐT là {x l x>3}
\(a,x+\frac{4}{5}-x+4=\frac{x}{3}-x-1\)
\(x+\frac{24}{5}-x=\frac{x}{3}-x-1\)
\(x+\frac{24}{5}-x-\frac{x}{3}+x+1=0\)
\(x+\frac{29}{5}-\frac{x}{3}=0\)
\(x-\frac{1}{3}x=-\frac{29}{5}\)
\(\frac{2}{3}x=-\frac{29}{5}\)
\(x=-\frac{87}{10}\)
\(\Leftrightarrow2\left(x+1\right)^3=56\Leftrightarrow\left(x+1\right)^3=28\Leftrightarrow\)
a) Thay \(x=-1\) và \(y=\dfrac{1}{4}\) vào, ta được:
\(2\cdot\left(-1\right)^2\cdot\dfrac{1}{4}\)
= \(\dfrac{1}{2}\)
b) Thay \(x=-\dfrac{1}{2}\) và \(y=-4\) vào, ta được:
\(-\dfrac{1}{2}\cdot\left(-\dfrac{1}{2}\right)^3\cdot\left(-4\right)^2\)
= \(\left(-\dfrac{1}{2}\right)^4\cdot16\)
= 1
gọi 2021-x = a
2023-x=b
2x-4044=c
ta có a + b + c=2021-x+2023-x+2x-4044=0
suy ra a + b = -c
suy ra (a+b)^3 =-c^3
ta có a^3 + b^3 + c^3=(a+b)^3 -3ab(a+b) + c^3 = -c^3 +3abc +c^3 = 3abc
ta có (2021-x)^3 + (2023-x)^3 + (2x-4044)^3 = 0
=> 3(2021-x)(2023-x)(2x-4044)=0
=> th 1 x = 2021, th 2 x = 2023; th3 x = 2022
\(x^2-4x+3x-12=x^2-x-12\)