Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gợi ý nhé
a (=) 2x.( 4x2+1) = (3x+2). căn(3x+1) ( x>=-1/3)
đặt 2x =a
căn (3x+1) = b (b>=0)
ta có hpt sau a.(a2 +1)=b.(b2+1) (1)
3a-2b2= -2 (2)
giải (1) (=) a3 + a = b3 + b
(=) (a-b).(a2+ab+b2+1) = 0 =) a=b ( vì a2+ab+b2+1>0)
phần còn lại tự giải nhé
b (=) (x+1).(x2+2x+2)=(x+2) . căn(x+1) (x>=-1)
(=) căn (x+1) . [căn(x+1) . (x2+2x+2) -x-2] = 0
=) x=-1
hay căn(x+1) . (x2+2x+2) -x-2=0
cách 1 giải phổ thông ( chuyển vế rồi bình phương)
cách 2 đặt ẩn phụ và lập hệ
đặt căn(x+1)=a (a>=0)
=) a.[x(a2+1)+2] = a2+1 và a2 - x =1
tự giải nhé
c,tạm thời chưa nghĩ ra
5.
ĐKXĐ: ...
\(\Leftrightarrow3x^2-14x-5+\sqrt{3x+1}-4+1-\sqrt{6-x}=0\)
\(\Leftrightarrow\left(3x+1\right)\left(x-5\right)+\frac{3\left(x-5\right)}{\sqrt{3x+1}+4}+\frac{x-5}{1+\sqrt{6-x}}=0\)
\(\Leftrightarrow\left(x-5\right)\left(3x+1+\frac{3}{\sqrt{3x+1}+4}+\frac{1}{1+\sqrt{6-x}}\right)=0\)
\(\Leftrightarrow x=5\)
6.
ĐKXĐ: \(-4\le x\le4\)
\(\Leftrightarrow\frac{\left(\sqrt{x+4}-2\right)\left(\sqrt{x+4}+2\right)\left(\sqrt{4-x}+2\right)}{\sqrt{x+4}+2}=2x\)
\(\Leftrightarrow\frac{x\left(\sqrt{4-x}+2\right)}{\sqrt{x+4}+2}=2x\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\frac{\sqrt{4-x}+2}{\sqrt{x+4}+2}=2\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\sqrt{4-x}+2=2\sqrt{x+4}+4\)
\(\Leftrightarrow2\sqrt{x+4}-\frac{4}{5}+\frac{14}{5}-\sqrt{4-x}=0\)
\(\Leftrightarrow\frac{2\left(x+4-\frac{4}{25}\right)}{\sqrt{x+4}+\frac{2}{5}}+\frac{\frac{196}{25}-4+x}{\frac{14}{5}+\sqrt{4-x}}=0\)
\(\Leftrightarrow\left(x-\frac{96}{25}\right)\left(\frac{2}{\sqrt{x+4}+\frac{2}{5}}+\frac{1}{\frac{14}{5}+\sqrt{4-x}}\right)=0\)
\(\Rightarrow x=\frac{96}{25}\)
1.
Bạn coi lại đề
2.
ĐKXĐ: \(1\le x\le2\)
Nhận thấy \(\sqrt{x+2}+\sqrt{x-1}>0;\forall x\) , nhân 2 vế của pt với nó:
\(\left(\sqrt{x+2}+\sqrt{x-1}\right)\left(\sqrt{x+2}-\sqrt{x-1}\right)\left(\sqrt{2-x}+1\right)=\sqrt{x+2}+\sqrt{x-1}\)
\(\Leftrightarrow3\left(\sqrt{2-x}+1\right)=\sqrt{x+2}+\sqrt{x-1}\)
\(\Leftrightarrow3\sqrt{2-x}+3=\sqrt{x+2}+\sqrt{x-1}\)
\(\Leftrightarrow3\sqrt{2-x}+2-\sqrt{x+2}+1-\sqrt{x-1}=0\)
\(\Leftrightarrow3\sqrt{2-x}+\frac{2-x}{2+\sqrt{x+2}}+\frac{2-x}{1+\sqrt{x-1}}=0\)
\(\Leftrightarrow\sqrt{2-x}\left(3+\frac{\sqrt{2-x}}{2+\sqrt{x+2}}+\frac{\sqrt{2-x}}{1+\sqrt{x-1}}\right)=0\)
\(\Leftrightarrow\sqrt{2-x}=0\Rightarrow x=2\)
mọi người giúp mình với ạ,mai mình phải nộp rồi nhưng kô biết làm .Mong mn giúp đỡ!!!
\(x=1+\sqrt[3]{5}+\sqrt[3]{25}\Rightarrow x-1=\sqrt[3]{5}+\sqrt[3]{25}\)
\(\Rightarrow\left(x-1\right)^3=5+25+3.\sqrt[3]{5.25}\left(\sqrt[3]{5}+\sqrt[3]{25}\right)=30+15\left(\sqrt[3]{5}+\sqrt[3]{25}\right)\)
\(\Rightarrow\left(x-1\right)^3=30+15\left(x-1\right)=15+15x\)
Ta có:
\(P=\left(x^3-3x^2+3x-1-15x-14\right)^{10}+2018\)
\(P=\left(\left(x-1\right)^3-15x-14\right)^{10}+2018=\left(15+15x-15x-14\right)^{10}+2018\)
\(\Rightarrow P=1^{10}+2018=1+2018=2019\)
7/
ĐKXĐ: \(-3\le x\le\frac{2}{3}\)
\(\Leftrightarrow2x+8\sqrt{x+3}+4\sqrt{3-2x}=2\)
\(\Leftrightarrow8\sqrt{x+3}+4\sqrt{3-2x}-\left(3-2x\right)+1=0\)
\(\Leftrightarrow8\sqrt{x+3}+\sqrt{3-2x}\left(4-\sqrt{3-2x}\right)+1=0\)
Do \(x\ge-3\Rightarrow3-2x\le9\Rightarrow\sqrt{3-2x}\le3\)
\(\Rightarrow4-\sqrt{3-2x}>0\)
\(\Rightarrow VT>0\)
Phương trình vô nghiệm (bạn coi lại đề)
5/
\(\Leftrightarrow8x^2-3x+6-4x\sqrt{3x^2+x+2}=0\)
\(\Leftrightarrow\left(4x^2-4x\sqrt{3x^2+x+2}+3x^2+x+2\right)+\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(2x-\sqrt{3x^2+x+2}\right)^2+\left(x-2\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-\sqrt{3x^2+x+2}=0\\x-2=0\end{matrix}\right.\) \(\Rightarrow x=2\)
6/
ĐKXĐ: ....
\(\Leftrightarrow\left(x-2000-2\sqrt{x-2000}+1\right)+\left(y-2001-2\sqrt{y-2001}+1\right)+\left(z-2002-2\sqrt{z-2002}+1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-2000}-1\right)^2+\left(\sqrt{y-2001}-1\right)^2+\left(\sqrt{z-2002}-1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-2000}-1=0\\\sqrt{y-2001}-1=0\\\sqrt{z-2002}-1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2001\\y=2002\\z=2003\end{matrix}\right.\)
a) Đặt \(\left(x^2-7x;\sqrt{x^2-7x+8}\right)=\left(a;b\right)\left(b\ge0\right)\)
Phương trình đã cho tương đương với hệ
\(\left\{{}\begin{matrix}a+b=12\\b^2-a=8\end{matrix}\right.\)
\(\left\{{}\begin{matrix}a+b=12\\b^2+b=20\end{matrix}\right.\)
\(\left\{{}\begin{matrix}a+b=20\\\left[{}\begin{matrix}b=4\\b=-5\end{matrix}\right.\end{matrix}\right.\)(Loại no -5)
\(\left\{{}\begin{matrix}a=16\\b=4\end{matrix}\right.\)
Thay a;b vào chỗ đặt ban đầu, giải phương trình bậc 2 tìm nghiệm
c) Đặt \(\left(\sqrt{x-3};\sqrt{5-x}\right)=\left(a;b\right)\)
\(\left\{{}\begin{matrix}a+b=-\left(ab+3\right)\\a^2+b^2=2\end{matrix}\right.\)
\(\left\{{}\begin{matrix}a+b=-3-ab\\\left(a+b\right)^2-2ab=2\end{matrix}\right.\)
Lại đặt \(\left(a+b;ab\right)=\left(z;t\right)\)
\(\left\{{}\begin{matrix}z=-3-t\\z^2-2t=2\end{matrix}\right.\)
\(\left\{{}\begin{matrix}z=-3-t\\z^2-2\left(-3-z\right)=2\end{matrix}\right.\)
Tiếp tục giải ;v
Bài 6:
ĐK: $x\geq \frac{2}{3}$
Đặt $\sqrt{4x+1}=a; \sqrt{3x-2}=b(a,b\geq 0)$
PT trở thành:
$a-b=a^2-b^2$
$\Leftrightarrow (a-b)(a+b)-(a-b)=0$
$\Leftrightarrow (a-b)(a+b-1)=0$
Nếu $a-b=0\Leftrightarrow 4x+1=3x-2\Leftrightarrow x=-3$ (loại vì không thỏa ĐKXĐ)
Nếu $a+b-1=0$
$\Leftrightarrow b=1-a$
$\Leftrightarrow \sqrt{3x-2}=1-\sqrt{4x+1}$
$\Rightarrow 3x-2=4x+2-2\sqrt{4x+1}$
$\Leftrightarrow x+4=2\sqrt{4x+1}$
$\Rightarrow (x+4)^2=4(4x+1)$
$\Leftrightarrow x^2-8x+12=0\Leftrightarrow x=6$ hoặc $x=2$
Vậy.......
Bài 5:
ĐK: $x\geq -2$
PT $\Leftrightarrow 3\sqrt{(x+2)(x^2-2x+4)}=2x^2-3x+10$
Đặt $\sqrt{x+2}=a; \sqrt{x^2-2x+4}=b(a,b\geq 0)$
Khi đó PT trở thành:
$3ab=2b^2+a^2$
$\Leftrightarrow a^2-3ab+2b^2=0$
$\Leftrightarrow a(a-b)-2b(a-b)=0$
$\Leftrightarrow (a-b)(a-2b)=0$
Nếu $a-b=0\Rightarrow a^2-b^2=0$
$\Leftrightarrow x+2-(x^2-2x+4)=0$
$\Leftrightarrow x^2-3x+2=0\Rightarrow x=1$ hoặc $x=2$ (thỏa mãn)
Nếu $a-2b=0\Rightarrow 4b^2-a^2=0$
$\Leftrightarrow 4(x^2-2x+4)-(x+2)=0$
$\Leftrightarrow 4x^2-9x+14=0$ (pt vô nghiệm)
Vậy.........
Em sửa tí:
"Tức là \(-\left(8x^2+20x+21-\frac{x+6}{2}\right)< 0\) (2)" Đánh số (2) ở chỗ này mới đúng nha!
ĐK \(x\ge-3\)
Pt
<=> \(\left(x+3\right)\sqrt{x+3}+3\left(x+3\right)+3\sqrt{x+3}+1=8x^3+12x^2+6x+1\)
<=> \(\left(\sqrt{x+3}+1\right)^3=\left(2x+1\right)^3\)
=> \(\sqrt{x+3}=2x\)
=> \(\left\{{}\begin{matrix}x\ge0\\4x^2-x-3=0\end{matrix}\right.\)
=> \(x=1\)(tmĐK)
Vậy x=1