Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{1}{25}x^2-64y^2=\left(\frac{1}{5}x+8y\right)\left(\frac{1}{5}x-8y\right)\)
b) \(x^3+\frac{1}{27}=\left(x+\frac{1}{3}\right)\left(x^2-\frac{1}{3}x+\frac{1}{9}\right)\)
c) \(-x^3+9x^2-27x+27\)
\(=27-x^3+9x^2-27x\)
\(=\left(3-x\right)\left(9+3x+x^2\right)+9x\left(x-3\right)\)
\(=\left(3-x\right)\left(9+3x+x^2\right)-9x\left(3-x\right)\)
\(=\left(3-x\right)\left(9+3x+x^2-9x\right)\)
\(=\left(3-x\right)\left(9-6x+x^2\right)=\left(3-x\right)\left(9-3x-3x+x^2\right)\)
\(=\left(3-x\right)\left[3\left(3-x\right)-x\left(3-x\right)\right]=\left(3-x\right)\left(3-x\right)\left(3-x\right)=\left(3-x\right)^3\)
(Nhớ k cho mình với nha!, Mình chắc chắn là mình làm đứng luôn đó! Chúc may mắn nhá!)
a/ Ta có: \(\frac{1}{25}x^2-64y^2=\left(\frac{1}{5}x\right)^2-\left(8y\right)^2=\left(\frac{1}{5}x-8y\right)\left(\frac{1}{5}x+8y\right)\)
b/ \(x^3+\frac{1}{27}=x^3+\left(\frac{1}{3}\right)^3=\left(x+\frac{1}{3}\right)\left(x^2-\frac{1}{3}x+\frac{1}{9}\right)\)
c/ Đề sai
a, \(x^3-3x^2+3x-1=\left(x-1\right)^3\)
b, \(1-9x+27x^2-27x^3=-\left(3x-1\right)^3\)
Mình có làm ở câu dưới rồi . Bạn tham khảo link :
https://olm.vn/hoi-dap/detail/231817932107.html
a. 27x2 . ( y - 1 ) - 9x3 . ( 1 - y )
= 27x2 ( y - 1 ) + 9x3 ( y - 1 )
= 9x2 ( y - 1 ) ( 3 + x )
b. 8x3 + 1/27
= (2x )3 + ( 1/3 )3
= ( 2x + 1/3 ) ( 4x2 - 2/3x + 9 )
b)3x^2-18x+27=3x^2-9x-9x+27=3x*(x-3)-9*(x-3)=(x-3)*(3x-9)=(x-3)*3*(x-3)=3*(x-3)^2
c)x^3-4x^2-12x+27=(x+3)*(x^2-3x+9-4)=(x+3)*(x^2-3x+5)
d)27x^3-1/27=(3x-1/3)*(9x^2-x+1/9) (hang dt)
con a) voi e) mk chiu
7, \(27x^3+y^3=\left(3x+y\right)\left(9x^2-3xy+y^2\right)\)
8, \(8x^3-\frac{1}{125}y^3=\left(2x-\frac{1}{5}y\right)\left(4x^2+\frac{2}{5}xy+\frac{1}{25}y^2\right)\)
9, ĐK x >= 0
\(x-2\sqrt{x}-3=x-3\sqrt{x}+\sqrt{x}-3\)
\(=\sqrt{x}\left(\sqrt{x}+1\right)-3\left(\sqrt{x}+1\right)=\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)\)
10, \(-4x^2-4x+10=-\left(4x^2+4x+1\right)+11\)
\(=-\left[\left(2x+1\right)^2-11\right]=-\left(2x+1-\sqrt{11}\right)\left(2x+1+\sqrt{11}\right)\)
11;12 xem lại đề
13, \(-x^3+6xy^2-12xy^2+8y^3=-\left(x^3-6xy^2+12xy^2-8y^3\right)=-\left(x-2y\right)^3\)
Trả lời:
7, \(27x^3+y^3=\left(3x+y\right)\left(9x^2-3xy+y^2\right)\)
8, \(8x^3-\frac{1}{125}y^3=\left(2x-\frac{1}{5}y\right)\left(4x^2+\frac{2}{5}xy+\frac{1}{25}y^2\right)\)
9, \(x-2\sqrt{x}-3\left(ĐK:x\ge0\right)\)
\(=x-3\sqrt{x}+\sqrt{x}-3=\sqrt{x}\left(\sqrt{x}-3\right)+\left(\sqrt{x}-3\right)=\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)\)
10, \(10-4x-4x^2=-\left(4x^2+4x-10\right)=-\left(4x^2+4x+1-11\right)=-\left[\left(2x+1\right)^2-11\right]\)
\(=-\left(2x+1\right)^2+11=-\left[\left(2x+1\right)^2-11\right]=-\left(2x+1-\sqrt{11}\right)\left(2x+1+\sqrt{11}\right)\)
11,sửa đề: \(15x\left(x-3y\right)+20y\left(3y-x\right)=15x\left(x-3y\right)-20y\left(x-3y\right)=5\left(x-3y\right)\left(3x-4y\right)\)
12, \(25x^2-2=\left(5x-\sqrt{2}\right)\left(5x+\sqrt{2}\right)\)
13, sửa đề: \(-x^3+6x^2y-12xy^2+8y^3=-\left(x^3-6x^2y+12xy^2-8y^3\right)=-\left(x-2y\right)^3\)
a. x3 - 3x2 + 3x - 1
= (x-1)3
b. (x+y)2 - 4x2
=(x+y-4x)(x+y+4x)
c. 27x3 + 1/8
= (3x)3 +(1/2)3
=(3x+ 1/2) (9x - 3x.1/2 - 1/4)
d. ( x+y)3 - (x-y)3
= [(x+y)-(x-y)] [(x+y)2 + (x+y)(x-y) + (x-y)2]
=(x+y-x+y)[x2+2xy+y2+x2-y2+x2-2xy+y2)
=2y . (3x2+y2)
Mấy câu này ko biết đúng hay sai :{
\(8-27x^3\)
\(=2^3-\left(3x\right)^3\)
\(=\left(2-3x\right)\left(4+6x+9x^2\right)\)
a) \(8-27x^3=\left(2-x\right)\left(4+6x+9x^2\right)\)
b) \(27+27x+9x^2+x^3=\left(3+x\right)^3\)
c) \(x^3+8y^3=\left(x+2y\right)\left(x^2-2xy+4y^2\right)\)
a) \(x^3-\frac{1}{4}x=x\left(x^2-\frac{1}{4}\right)=x\left(x-\frac{1}{2}\right)\left(x+\frac{1}{2}\right)\)
b) \(\left(2x-1\right)^2-\left(x+3\right)^2=\left(2x-1-x-3\right)\left(2x-1+x+3\right)=\left(x-4\right)\left(3x+2\right)\)
c) \(x^2-y^2-2y-1=x^2-\left(y^2+2y+1\right)=x^2-\left(y+1\right)^2=\left(x-y-1\right)\left(x+y+1\right)\)
d) \(x^2\left(x-3\right)+12-4x=x^2\left(x-3\right)-4\left(x-3\right)=\left(x-3\right)\left(x^2-2^2\right)=\left(x-3\right)\left(x-2\right)\left(x+2\right)\)
Phép tính b):
Đặt 2x - 1 = a ; x + 3 = b. Từ đầu bài suy ra:
\(\left(2x-1\right)^2-\left(x+3\right)^2\Rightarrow a^2-b^2\)
\(\Rightarrow a^2-b^2-\left(ab-ab\right)\Rightarrow\left(a^2-ab\right)-\left(b^2-ab\right)\)
\(\Rightarrow a\left(a-b\right)-b\left(b-a\right)\Rightarrow a\left(a-b\right)+b\left(a-b\right)\)
\(\Rightarrow\left(a+b\right)\left(a-b\right)\)
Thế lại vào ta có:
\(\orbr{\begin{cases}a+b=\left(2x-1\right)+\left(x+3\right)=\left(2x+x\right)-\left(1-3\right)=3x+2\\a-b=\left(2x-1\right)-\left(x-3\right)=\left(2x-x\right)-\left(1-3\right)=x+2\end{cases}}\)
\(\Rightarrow\left(a+b\right)\left(a-b\right)=\left(3x+2\right)\left(x+2\right)\)
\(ĐKXĐ:x\ne\pm\frac{3}{2};x\ne1;x\ne0\)
\(A=\left(\frac{2+3x}{2-3x}-\frac{36x^2}{9x^2-4}-\frac{2-3x}{2+3x}\right):\frac{x^2-x}{2x^2-3x^3}\)
\(=\left[\frac{\left(2+3x\right)^2}{\left(2+3x\right)\left(2-3x\right)}+\frac{36x^2}{\left(2-3x\right)\left(2+3x\right)}-\frac{\left(2-3x\right)^2}{\left(2-3x\right)\left(2+3x\right)}\right]:\frac{x\left(x-1\right)}{x^2\left(2-3x\right)}\)
\(=\frac{4+12x+9x^2+36x^2-4+12x-9x^2}{\left(2+3x\right)\left(2-3x\right)}\cdot\frac{x\left(2-3x\right)}{x-1}\)
\(=\frac{36x^2+24x}{\left(2+3x\right)\left(2-3x\right)}\cdot\frac{x\left(2-3x\right)}{x-1}\)
\(=\frac{12x\left(3x+2\right)}{2+3x}\cdot\frac{x}{x-1}\)
\(=\frac{12x^2}{x-1}\)
Để A nguyên dương hay \(\frac{12x^2}{x-1}\) nguyên dương
Mà \(12x^2\ge0\Rightarrow x-1>0\Rightarrow x>1\)
Vậy để A nguyên dương thì x là số nguyên dương lớn hơn 1.
\(x^3+\frac{1}{x^3}=x^3+\left(\frac{1}{x}\right)^3=\left(x+\frac{1}{x}\right)\left(x^2-x+\frac{1}{x^2}\right)\)( x khác 0 )
\(-x^3+9x^2-27x+27=-\left(x^3-9x^2+27x-27\right)=-\left(x-3\right)^3\)
\(\left(xy+1\right)^2-\left(x-y\right)^2=\left(xy+1-x+y\right)\left(xy+1+x-y\right)\)