K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2017

x= -3, -5 

 la một trong nhưng cái cần tìm

4 tháng 1 2017

Theo bài ra , ta có : 

\(\left(x+3\right)^4+\left(x+5\right)^4=16\)

\(\Leftrightarrow\left(x+3+x+5\right)^4=16\)

\(\Leftrightarrow\left(2x+8\right)^4=16\)

\(\Leftrightarrow2x+8=2\)

\(\Leftrightarrow2x=-6\)

\(\Leftrightarrow x=-3\)

Vậy \(x=-3\)

Chúc bạn học tốt =))

28 tháng 2 2018

b. sửa đề

\(6x^4+25x^3+12x-25x^2+6=0\)

\(\Leftrightarrow6x^4+12x^3+13x^3+26x^2-14x^2-28x+3x+6=0\)

\(\Leftrightarrow6x^3\left(x+2\right)+13x^2\left(x+2\right)-14x\left(x+2\right)+3\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(6x^3+13x^2-14x+3\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x+3\right)\left(2x-1\right)\left(3x-1\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-2\\x=-3\\x=\dfrac{1}{2}\\x=\dfrac{1}{3}\end{matrix}\right.\)

Vậy........

28 tháng 2 2018

Bài 1 : Giải phương trình

a) (x + 3)4 + (x + 5)4 = 16

Đặt : x + 3 = t

=> x + 5 = x + 3 + 2 = t + 2

Thay x + 3 = t và x + 5 = t + 2 vào phương trình, ta có :

t4 + (t + 2)4 = 16

<=> 2t4 + 8t3 + 24t2 + 32t + 16 = 16

<=> 2(t4 + 4t3 + 12t2 + 16t) = 0

<=> t4 + 4t3 + 12t2 + 16t = 0

<=> (t + 2) . t . (t2 + 2y + 4) = 0

TH1 : t = 0

TH2 : t + 2 = 0 <=> t = -2

TH3 : t2 + 2y + 4 = 0 (vô nghiệm => loại)

Nên t = 0 hoặc t = -2

hay x + 3 = -2 hoặc x + 3 = 0

<=> x = -5 hoặc x = -3

\(S=\left\{-5;-3\right\}\)

b) 6x4 + 25x3 + 12x2 - 25x + 6 = 0

<=> 6x4 + 12x3 + 13x3 + 26x2 - 14x2 - 28x + 3x + 6 = 0

<=> 6x3 (x + 2) + 13x2 (x + 2) - 14x (x + 2) + 3(x + 2) = 0

<=> (x + 2)(6x3 + 13x2 - 14x + 3) = 0

<=> (x + 2)(6x3 + 18x2 - 5x2 - 15x + x + 3) = 0

\(\Leftrightarrow\left(x+2\right)[6x^2\left(x+3\right)-5x\left(x+3\right)+\left(x+3\right)]=0\)

<=> (x + 2)(x + 3) (6x2 - 5x + 1) = 0

<=> (x + 2)(x + 3)(2x - 1)(3x - 1) = 0

TH1 : x + 2 = 0 <=> x = -2

TH2 : x + 3 = 0 <=> x = -3

TH3 : 2x - 1 = 0 <=> 2x = 1 <=> x = \(\dfrac{1}{2}\)

TH4 : 3x - 1 = 0 <=> 3x = 1 <=> 3x = \(\dfrac{1}{3}\)

\(S=\left\{-2;-3;\dfrac{1}{2};\dfrac{1}{3}\right\}\)

23 tháng 1 2018

a) ( x + 3)4 + ( x + 5)4 = 16

Đặt : x + 4 = a , ta có :

( a - 1)4 + ( a + 1)4 = 16

=> a4 - 4a3 + 6a2 - 4a + 1 + a4 + 4a3 + 6a2 + 4a + 1 = 16

=> 2a4 + 12a2 + 2 - 16 = 0

=> 2( a4 + 6a2 - 7 ) = 0

=> a4 - a2 + 7a2 - 7 = 0

=> a2( a2 - 1) + 7( a2 - 1) = 0

=> ( a2 + 7)( a2 - 1) = 0

Do : a2 + 7 > 0 ∀a

=> a = 1 hoặc a = -1

* Với a = 1 , ta có :

x + 4 = 1

=> x = - 3

* với a = -1 , ta có :

x + 4 = -1

=> x = - 5

Vậy,...

b) ( x - 2)4 + ( x - 3)4 = 1

Đặt : x - 2 = a , ta có :

a4 + ( a - 1)4 = 1

=> a4 + a4 - 4a3 + 6a2 - 4a + 1 - 1 = 0

=> 2a4 - 4a3 + 6a2 - 4a = 0

=> 2a( a3 - 2a2 + 3a - 2) = 0

Suy ra :

*) a = 0

*) a3 - 2a2 + 3a - 2 = 0

=> a3 - a2 - a2 + a + 2a - 2 = 0

=> a2( a - 1) - a( a - 1) + 2( a - 1) = 0

=> ( a - 1)( a2 - a + 2 ) = 0

Do : a2 -a + 2 = \(a^2-2.\dfrac{1}{2}a+\dfrac{1}{4}-\dfrac{1}{4}+2=\left(a-\dfrac{1}{2}\right)^2+\dfrac{7}{4}\text{≥}\dfrac{7}{4}>0\text{∀}a\)

=> a - 1 = 0

=> a = 1

*) Với a = 0 thì :

x - 2 = 0

=> x = 2

*) Với a = 1 , thì :

x - 2 = 1

=> x = 3

Vậy,...

12 tháng 2 2016

a/ (2x2 + 3x - 1)2 - 4(2x2 + 3x + 3) + 20 = 0

Đặt a = 2x2 + 3x - 1 , ta đc:

a2 - 4.(a + 4) + 20 = 0

=> a2 - 4a - 16 + 20 = 0

=> a2 - 4a + 4 = 0

=> (a - 2)2 = 0 => a = 2

Với a = 2 => 2x2 + 3x - 1 = 2 => 2x2 + 3x - 3 = 0 

Có : \(\Delta=3^2-4.2.\left(-3\right)=33\Rightarrow\sqrt{\Delta}=\sqrt{33}\)

\(\Rightarrow x_1=\frac{-3+\sqrt{33}}{4};x_2=\frac{-3-\sqrt{33}}{4}\)

Vậy pt có 2 nghiệm như trên 

12 tháng 2 2016

b, c có 2 cách làm lận, bạn thích cách nào

18 tháng 8 2015

a/ \(\Rightarrow9\left(16x^2+24x+9\right)=16\left(9x^2-30x+25\right)\)

\(\Rightarrow144x^2+216x+81=144x^2-480x+400\)

\(\Rightarrow696x=319\Rightarrow x=\frac{11}{24}\)

13 tháng 7 2019

( x - 5 )4 + ( x - 3 )4 = 16

Đặt x - 4 = a

\(\Rightarrow\)x - 5 = a -1 

        x - 3 = a +1

Khi đó phương trình trở thành:

 ( a  - 1 )4 + ( a + 1 )4 = 16

\(\Leftrightarrow\)[ ( a - 1 )4  + 2.( a - 1 )2.( a + 1 )2 + ( a + 1 )4  ] - 2.( a - 1 )2.( a + 1 )2 = 16

\(\Leftrightarrow\)[ ( a - 1 )2 + ( a + 1 )2 ]2 - 2.( a - 1 )2.( a + 1 )2 = 16

\(\Leftrightarrow\)( a2 - 2a + 1 + a2 + 2a + 1 )2 - 2.( a2 - 1 )2 = 16

\(\Leftrightarrow\)( 2a2 + 2 )2  - 2.( a4 - 2a2 + 1 ) = 16

\(\Leftrightarrow\)4a4 + 8a2 + 4 - 2a4 + 4a2 - 2 - 16 = 0

\(\Leftrightarrow\) 2a4 + 12a2 - 14 = 0

\(\Leftrightarrow\)2.( a4 + 6a2 - 7 ) = 0

\(\Leftrightarrow\) a4 + 6a2 - 7 = 0

\(\Leftrightarrow\) a4 + 7a2 - a2 - 7 = 0

\(\Leftrightarrow\) a2.( a2 + 7 ) - ( a2 + 7 ) = 0

\(\Leftrightarrow\)( a2 - 1 ).( a2 + 7 ) = 0

\(\Leftrightarrow\)\(\orbr{\begin{cases}a^2-1=0\\a^2+7=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}a=\pm1\\a^2=-7\left(lo\text{ại}\right)\end{cases}}\)

Với a = 1                                              Với a = -1

\(\Rightarrow\) x - 4 = 1                                     \(\Rightarrow\) x - 4 = -1

\(\Leftrightarrow\) x = 5                                          \(\Leftrightarrow\) x = 3

Vậy x = 5 , x = 3

24 tháng 8 2020

a) (x - 1)3 + (2 - x)(4 + 2x + x2) + 3x(x + 2) = 16

x3 - 3x2 + 3x - 1 + 8 - x3 + 3x2 + 6x - 16 = 0

9x - 9 = 0

9x = 9

x = 1

Vậy x ∈ {1}

b) ( x + 2)(x2 - 2x + 4) - x(x2 - 2) = 16

x3 + 8 - x3 + 2x - 16 = 0

2x - 8 = 0

2x = 8

x = 4

Vậy x ∈ {4}

c) x(x - 5)(x + 5) - (x + 2)(x2 - 2x + 4) = 17

x3 - 25x - x3 - 8 - 17 = 0

-25x - 25 = 0

-25x = 25

x = -1

Vậy x ∈ {1}

d) (x - 3)3 - (x - 3)(x2 + 3x + 9) + 9(x + 1)2 = 15

x3 - 9x2 + 27x - 27 - x3 + 27 + 9x2 + 18x + 9 - 15 = 0

45x - 6 = 0

45x = 6

x = \(\frac{2}{15}\)

Vậy x ∈ {\(\frac{2}{15}\)}