Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em xin phép làm bài EZ nhất :)
4,ĐK :\(\forall x\in R\)
Đặt \(x^2+x+2=t\) (\(t\ge\dfrac{7}{4}\))
\(PT\Leftrightarrow\sqrt{t+5}+\sqrt{t}=\sqrt{3t+13}\)
\(\Leftrightarrow2t+5+2\sqrt{t\left(t+5\right)}=3t+13\)
\(\Leftrightarrow t+8=2\sqrt{t^2+5t}\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge-8\\\left(t+8\right)^2=4t^2+20t\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\3t^2+4t-64=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\\left(t-4\right)\left(3t+16\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\\left[{}\begin{matrix}t=4\left(tm\right)\\t=-\dfrac{16}{3}\left(l\right)\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow x^2+x+2=4\)\(\Leftrightarrow x^2+x-2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
Vậy ....
1) \(ĐK:\orbr{\begin{cases}0\le x\le2-\sqrt{3}\\x\ge2+\sqrt{3}\end{cases}}\)
\(x+1+\sqrt{x^2-4x+1}=3\sqrt{x}\Leftrightarrow x-5+\sqrt{x^2-4x+1}=3\sqrt{x}-6\)\(\Leftrightarrow\frac{-6\left(x-4\right)}{x-5-\sqrt{x^2-4x+1}}=\frac{9\left(x-4\right)}{3\sqrt{x}+6}\Leftrightarrow\left(x-4\right)\left(\frac{9}{3\sqrt{x}+6}+\frac{6}{x-5-\sqrt{x^2-4x+1}}\right)=0\)
Xét phương trình \(\frac{9}{3\sqrt{x}+6}+\frac{6}{x-5-\sqrt{x^2-4x+1}}=0\Leftrightarrow\left(18\sqrt{x}-9\right)+9\left(x-\sqrt{x^2-4x+1}\right)=0\)\(\Leftrightarrow\frac{81\left(4x-1\right)}{18\sqrt{x}+9}+\frac{9\left(4x-1\right)}{x+\sqrt{x^2-4x+1}}=0\Leftrightarrow\left(4x-1\right)\left(\frac{81}{18\sqrt{x}+9}+\frac{9}{x+\sqrt{x^2-4x+1}}\right)=0\)
Dễ thấy \(\frac{81}{18\sqrt{x}+9}+\frac{9}{x+\sqrt{x^2-4x+1}}>0\)với mọi x thỏa mãn điều kiện nên 4x - 1 = 0 hay x = 1/4
Vậy phương trình có tập nghiệm S = {4; 1/4}
e làm câu dễ nhất ^^
\(\sqrt{x+1}+\sqrt{4-x}+\sqrt{\left(x+1\right)\left(4-x\right)}=5\left(đk:-1\le x\le4\right)\)
\(< =>\left(\sqrt{x+1}-1\right)+\left(\sqrt{4-x}-2\right)+\left(\sqrt{\left(x+1\right)\left(4-x\right)}-2\right)=0\)
\(< =>\frac{x}{\sqrt{x+1}+1}-\frac{x}{\sqrt{4-x}+2}+\frac{x\left(3-x\right)}{\sqrt{\left(x+1\right)\left(4-x\right)+2}}=0\)
\(< =>x=0\)
2,\(pt\Leftrightarrow12\left(\sqrt{x+1}-2\right)+x^2+x-12=0\)
\(\Leftrightarrow12\cdot\frac{x-3}{\sqrt{x+1}+2}+\left(x-3\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{12}{\sqrt{x+1}+2}+x+4\right)=0\)
Vì \(\left(\frac{12}{\sqrt{x+1}+2}+x+4\right)\ge0\left(\forall x>-1\right)\)
\(\Rightarrow x=3\)