Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x - 2)3 - (x - 3)(x2 + 3x + 9) + 6(x + 1)2 = 49
<=>x3-6x2+12x-8-(x3-27)+6(x2+2x+1)=49
<=>x3-6x2+12x-8-x3+27+6x2+12x+6=49
<=>24x+25=49
<=>24x=24
<=>x=1
x(x + 5)(x - 5) - (x + 2)(x2 - 2x + 4) = 42
<=>x(x2-25)-(x3+8)=42
<=>x3-25x-x3-8=42
<=>-25x-8=42
<=>-25x=50
<=>x=-2
Xin lỗi mình làm hơi tắt nha !!!Còn 1 cách nữa ,nếu bạn muốn thì nói với mình nha !!
Ta có : \(\frac{x-1}{59}+\frac{x-2}{58}+\frac{x-3}{57}=\frac{x-4}{56}+\frac{x-5}{55}+\frac{x-6}{54}\)
\(\Leftrightarrow\frac{x}{59}+\frac{x}{58}+\frac{x}{57}-\frac{x}{56}-\frac{x}{55}-\frac{x}{54}=\frac{1}{59}+\frac{2}{58}+\frac{3}{57}-\frac{4}{56}-\frac{5}{55}-\frac{6}{54}\)
<=> x = 60
Vậy x = 60
Bạn kiểm tra lại đề nhé. Chỗ
\(.....=\frac{x-4}{56}+\frac{x-5}{56}+\frac{x-6}{54}\)
a) \(7x^2-16x=2x^3-56\)
\(\Leftrightarrow\)\(2x^3-7x^2+16x-56=0\)
\(\Leftrightarrow\)\(2x\left(x^2+8\right)-7\left(x^2+8\right)=0\)
\(\Leftrightarrow\)\(\left(2x-7\right)\left(x^2+8\right)=0\)
\(\Leftrightarrow\)\(2x-7=0\)
\(\Leftrightarrow\)\(x=3,5\)
Vậy...
b) \(x^7+x^3+2x^5+2x=0\)
\(\Leftrightarrow\)\(x.\left(x^6+x^2+2x^4+2\right)=0\)
\(\Leftrightarrow\)\(x\left(x^2+2\right)\left(x^4+1\right)=0\)
\(\Leftrightarrow\)\(x=0\)
Vậy...
c) \(\left(2x+1\right)x-5\left(x+\frac{1}{2}\right)=0\)
\(\Leftrightarrow\)\(2x\left(x+\frac{1}{2}\right)-5\left(x+\frac{1}{2}\right)=0\)
\(\Leftrightarrow\)\(\left(2x-5\right)\left(x+\frac{1}{2}\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}2x-5=0\\x+\frac{1}{2}=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=2,5\\x=-0,5\end{cases}}\)
Vậy...
a) \(\left(3x-5\right)\left(5-3x\right)+9\left(x+1\right)^2=30\)
\(\Rightarrow15x-9x^2-25+15x+9\left(x^2+2x+1\right)-30=0\)
\(\Rightarrow30x-9x^2-25+9x^2+18x+9-30=0\)
\(\Rightarrow48x-46=0\)
\(\Rightarrow x=\frac{23}{24}\)
b) \(\left(x+4\right)^2-\left(x+1\right)\left(x-1\right)=16\)
\(\Rightarrow\left(x^2+8x+16\right)-\left(x^2-1\right)=16\)
\(\Rightarrow x^2+8x+16-x^2+1=16\)
\(\Rightarrow8x+17=16\)
\(\Rightarrow8x=-1\)
\(\Rightarrow x=\frac{-1}{8}\)
c) \(\left(y-2\right)^3-\left(y-3\right)\left(y^2+3y+9\right)+6\left(y+1\right)^2=49\)
\(\Rightarrow\left(y-2\right)^3-\left(y^3-3^3\right)+6\left(y^2+2y+1\right)=49\)
\(\Rightarrow y^3-6y^2+12y-8-y^3+27+6y^2+12y+6=49\)
\(\Rightarrow\left(y^3-y^3\right)+\left(-6y^2+6y^2\right)+\left(12y+12y\right)+\left(-8+27+6\right)=49\)
\(\Rightarrow24y+25=49\)
\(\Rightarrow24y=24\)
\(\Rightarrow y=1\)
d) \(\left(y+3\right)^3-\left(y+1\right)^3=56\)
\(\Rightarrow\left(y+3-y-1\right)[\left(y+3\right)^2+\left(y+3\right)\left(y+1\right)+\left(y+1\right)^2]=56\)
\(\Rightarrow2\left(y^2+6y+9+y^2+4y+3+y^2+2y+1\right)=56\)
\(\Rightarrow3y^2+12y+13=28\)
\(\Rightarrow\left(3y^2+15y\right)-\left(3y+15\right)=0\)
\(\Rightarrow3y\left(y+5\right)-3\left(y+5\right)=0\)
\(\Rightarrow3\left(y-1\right)\left(y+5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\x+5=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=-5\end{cases}}\)
\(\left(x+3\right)^3-\left(x+1\right)^3=56\)
⇔ \(x^3+3.x^2.3+3.x.3^2+3^3-\left(x^3+3.x^2+3.x+1\right)=56\)
⇔ \(x^3+9x^2+27x+27-x^2-3x^2-3x-1=56\)
⇔ \(6x^2+24x+26=56\)
⇔ \(6x\left(x-4\right)=30\)
...
\(x^3+9x^2+27x+3-x^3-3x^2-3x-1=56\)
=>\(6x^2+24x=54\)
=>\(x^2+4x=9\)
=>\(\left(x+2\right)^2=13\)
=>x+2=\(\sqrt{13}\) hoặc x+2=\(-\sqrt{13}\)
=>x=\(\sqrt{13}-2\) hoặc x=\(-\sqrt{13}-2\)
b) x(x - 3)+ 4( 3 - x) =0
=> x(x - 3) - 4( x - 3) = 0
=> (x - 3)( x - 4) =0
<=> x - 3 = 0 hoặc x - 4= 0
=> x= 3 hoặc => x= 4
Vậy x= 3 hoặc 4
a) 7x2 - 2x3 + 56 - 16x = 0
=> x2 ( 7 - 2x) + 8 ( 7 - 2x) = 0
=> ( 7 - 2x) ( x2 +8) =0
<=> 7 - 2x = 0 hoặc x2 + 8 =0
=> x= 7/2 hoặc x2 = -8 ( loại vì x2 \(\ge\) 0 )
Vậy x= 7/2
b) \(x^3-7x-6=0\)
\(\Leftrightarrow\)\(x^3+x^2-x^2-x-6x-6=0\)
\(\Leftrightarrow\)\(x^2\left(x+1\right)-x\left(x+1\right)-6\left(x+1\right)=0\)
\(\Leftrightarrow\)\(\left(x+1\right)\left(x^2-x-6\right)=0\)
\(\Leftrightarrow\)\(\left(x+1\right)\left(x^2-3x+2x-6\right)=0\)
\(\Leftrightarrow\)\(\left(x+1\right)\left(x-3\right)\left(x+2\right)=0\)
đến đây tự lm tiếp nhé
a) Đặt \(x+2=a\) ta có:
\(\left(a+1\right)^3-\left(a-1\right)^3=56\)
\(\Leftrightarrow\)\(2\left(3a^2+1\right)=56\) (chỗ này bn tự giải ra nha)
\(\Leftrightarrow\)\(a^2=9\)
\(\Leftrightarrow\)\(a=\pm3\)
Thay trở lại ta có: \(\orbr{\begin{cases}x+2=3\\x+2=-3\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=1\\x=-5\end{cases}}\)
Ta có: \(\left(x+3\right)^3-\left(x+1\right)^3=56\)
\(\Leftrightarrow x^3+9x^2+27x+27-x^3-3x^2-3x-1-56=0\)
\(\Leftrightarrow6x^2+24x-30=0\)
\(\Leftrightarrow x^2+4x-5=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-5\end{cases}}\)