K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2023

\(\dfrac{x}{30}+1+\dfrac{x}{24}=\dfrac{11}{2}\)

=> \(\dfrac{4x}{120}+\dfrac{5x}{120}+\dfrac{120}{120}=\dfrac{11}{2}\)

=> \(\dfrac{9x+120}{120}=\dfrac{11}{2}\)

=> 18x + 240 = 1320

=> 18x = 1080

=> x = 60

   Vậy x=60

AH
Akai Haruma
Giáo viên
27 tháng 10 2018

\(A=\frac{1}{\sqrt{1}-\sqrt{2}}-\frac{1}{\sqrt{2}-\sqrt{3}}+\frac{1}{\sqrt{3}-\sqrt{4}}-....-\frac{1}{\sqrt{24}-\sqrt{25}}\)

\(=\frac{\sqrt{1}+\sqrt{2}}{(\sqrt{1}-\sqrt{2})(\sqrt{1}+\sqrt{2})}-\frac{\sqrt{2}+\sqrt{3}}{(\sqrt{2}-\sqrt{3})(\sqrt{2}+\sqrt{3})}+\frac{\sqrt{3}+\sqrt{4}}{(\sqrt{3}-\sqrt{4})(\sqrt{3}+\sqrt{4})}-...-\frac{\sqrt{24}+\sqrt{25}}{(\sqrt{24}-\sqrt{25})(\sqrt{24}+\sqrt{25})}\)

\(=\frac{\sqrt{1}+\sqrt{2}}{-1}-\frac{\sqrt{2}+\sqrt{3}}{-1}+\frac{\sqrt{3}+\sqrt{4}}{-1}-...-\frac{\sqrt{24}+\sqrt{25}}{-1}\)

\(=\frac{(1+\sqrt{2})-(\sqrt{2}+\sqrt{3})+(\sqrt{3}+\sqrt{4})-...-(\sqrt{24}+\sqrt{25})}{-1}\)

\(=\frac{1-\sqrt{25}}{-1}=4\)

AH
Akai Haruma
Giáo viên
27 tháng 10 2018

\(B=\frac{5}{4+\sqrt{11}}+\frac{11-3\sqrt{11}}{\sqrt{11}-3}-\frac{4}{\sqrt{5}-1}+\sqrt{(\sqrt{5}-2)^2}\)

\(=\frac{5(4-\sqrt{11})}{(4+\sqrt{11})(4-\sqrt{11})}+\frac{\sqrt{11}(\sqrt{11}-3)}{\sqrt{11}-3}-\frac{4(\sqrt{5}+1)}{(\sqrt{5}-1)(\sqrt{5}+1)}+\sqrt{5}-2\)

\(=\frac{5(4-\sqrt{11})}{5}+\sqrt{11}-\frac{4(\sqrt{5}+1)}{4}+\sqrt{5}-2\)

\(=4-\sqrt{11}+\sqrt{11}-(\sqrt{5}+1)+\sqrt{5}-2\)

\(=1\)

AH
Akai Haruma
Giáo viên
27 tháng 7 2020

d)

ĐK: $x\leq \frac{16}{7}$

PT $\Rightarrow 16-7x=11^2=121$

$\Rightarrow 7x=16-121=-105$

$\Leftrightarrow x=-15$ (thỏa mãn)

e) ĐK: $x\geq 3$

PT $\Rightarrow 10(x-3)=30$ (bình phương 2 vế)

$\Leftrightarrow x-3=3\Leftrightarrow x=6$

(thỏa mãn)

f)

ĐK: $x\geq 2$

PT $\Leftrightarrow \sqrt{x-2}=6$

$\Rightarrow x-2=6^2=36\Leftrightarrow x=38$ (thỏa mãn)

AH
Akai Haruma
Giáo viên
27 tháng 7 2020

a)

ĐK: $x\geq \frac{-5}{2}$

PT $\Rightarrow 2x+5=25$ (bình phương 2 vế)

$\Leftrightarrow 2x=10\Leftrightarrow x=5$ (thỏa mãn)

b) ĐK: $x\geq \frac{-1}{3}$

PT $\Rightarrow 3x+1=10$ (bình phương 2 vế)

$\Leftrightarrow 3x=9\Leftrightarrow x=3$ (thỏa mãn)

c)

ĐK: $x\geq 7$

PT $\Leftrightarrow \sqrt{x-7}=3+0=3$

$\Rightarrow x-7=3^2$

$\Leftrightarrow x=16$ (thỏa mãn)

26 tháng 5 2017

a)\(\hept{\begin{cases}x+y+xy=11\\x^2y+xy^2=30\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y+xy=11\\xy\left(x+y\right)=30\end{cases}}\)

Đặt \(S=x+y;P=xy\left(S^2\ge4P\right)\) có:

\(\hept{\begin{cases}S+P=11\\SP=30\end{cases}}\Rightarrow\hept{\begin{cases}S=5\\P=6\end{cases}}or\hept{\begin{cases}S=6\\P=5\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x+y=6\\xy=5\end{cases}or\hept{\begin{cases}x+y=5\\xy=6\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}x=1\\y=5\end{cases};\hept{\begin{cases}x=5\\y=1\end{cases}}or\hept{\begin{cases}x=2\\y=3\end{cases}};\hept{\begin{cases}x=3\\y=2\end{cases}}}\)

b)Thay số hay đặt ẩn.... gì đó tùy, nhiều pp 

ra \(x=8;y=-8\)

1 tháng 10 2021

Tham khảo:

1) Giải phương trình : \(11\sqrt{5-x}+8\sqrt{2x-1}=24+3\sqrt{\left(5-x\right)\left(2x-1\right)}\) - Hoc24

 

1 tháng 10 2021

ghê thậc, còn cái còn lại thì seo?

10 tháng 11 2021

\(B=\dfrac{\left(x^2-2x\right)\left(20x-11\right)}{\left(x-2012\right)\left(1982x^2+30\right)}-\dfrac{\left(20x-11\right)\left(x^2-3x+2012\right)}{\left(1982x^2+30\right)\left(x-2012\right)}\left(x\ne2012\right)\\ B=\dfrac{\left(20x-11\right)\left(x^2-2x-x^2+3x-2012\right)}{\left(x-2012\right)\left(1982x^2+30\right)} \\ B=\dfrac{\left(20x-11\right)\left(x-2012\right)}{\left(x-2012\right)\left(1982x^2+30\right)}=\dfrac{20x-11}{1982x^2+30}\)

NV
10 tháng 2 2020

\(\Leftrightarrow\left\{{}\begin{matrix}x^3y+2x^2y^2+xy^3+x^3y^2+x^2y^3=30\\x^2y+xy^2+xy+x+y=11\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}xy\left(x^2+2xy+y^2\right)+x^2y^2\left(x+y\right)=30\\xy\left(x+y\right)+\left(xy+x+y\right)=30\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}xy\left(x+y\right)^2+x^2y^2\left(x+y\right)=30\\xy\left(x+y\right)+\left(xy+x+y\right)=11\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}xy\left(x+y\right)\left(xy+x+y\right)=30\\xy\left(x+y\right)+\left(xy+x+y\right)=11\end{matrix}\right.\)

Theo Viet đảo, \(xy\left(x+y\right)\)\(xy+x+y\) là nghiệm của:

\(t^2-11t+30=0\Rightarrow\left[{}\begin{matrix}t=6\\t=5\end{matrix}\right.\)

TH1: \(\left\{{}\begin{matrix}xy\left(x+y\right)=6\\xy+x+y=5\end{matrix}\right.\)

Theo Viet đảo, \(xy\)\(x+y\) là nghiệm của: \(u^2-5u+6=0\Rightarrow\left[{}\begin{matrix}u=2\\u=3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+y=2\\xy=3\end{matrix}\right.\\\left\{{}\begin{matrix}x+y=3\\xy=2\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left(x;y\right)=\left(1;2\right);\left(2;1\right)\)

TH2: \(\left\{{}\begin{matrix}xy\left(x+y\right)=5\\xy+x+y=6\end{matrix}\right.\) ..........

29 tháng 4 2016

Đặt căn(x^2+24)=a;căn(x^2+11)=b

ta có a^2-b^2=13

a^2+b^2=2a^2+11

29 tháng 4 2016

cách đó dài