![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) x(x - 3) + 5x = x2 - 8
=> x2 - 3x + 5x - x2 + 8 = 0
=> 2x + 8 = 0
=> 2x = -8
=> x = -4
b) 3(x + 4) - x2 - 4x = 0
=> 3(x + 4) - x(x + 4) = 0
=> (3 - x)(x + 4) = 0
=> \(\orbr{\begin{cases}3-x=0\\x+4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=-4\end{cases}}\)
Vậy \(x\in\left\{3;-4\right\}\)là giá trị cần tìm
c) 7x3 + 12x2 - 4x = 0
=> x(7x2 + 12x - 4) = 0
=> x(7x2 + 14x - 2x - 4) = 0
=> x[7x(x + 2) - 2(x + 2)] = 0
=> x(x + 2)(7x - 2) = 0
=> x = 0 hoặc x + 2 = 0 hoặc 7x - 2 = 0
=> x = 0 hoặc x = -2 hoặc x = 2/7
Vậy \(x\in\left\{0;-2;\frac{2}{7}\right\}\)là giá trị cần tìm
x( x - 3 ) + 5x = x2 - 8
⇔ x2 - 3x + 5x - x2 + 8 = 0
⇔ 2x + 8 = 0
⇔ 2x = -8
⇔ x = -4
3( x + 4 ) - x2 - 4x = 0
⇔ 3( x + 4 ) - x( x + 4 ) = 0
⇔ ( x + 4 )( 3 - x ) = 0
⇔ x = -4 hoặc x = 3
7x3 + 12x2 - 4x = 0
⇔ x( 7x2 + 12x - 4 ) = 0
⇔ x( 7x2 + 14x2 - 2x - 4 ) = 0
⇔ x[ 7x( x + 2 ) - 2( x + 2 ) ] = 0
⇔ x( x + 2 )( 7x - 2 ) = 0
⇔ x = 0 hoặc x = -2 hoặc x= 2/7
![](https://rs.olm.vn/images/avt/0.png?1311)
1) \(X^2-7x+6=0\)
\(\Leftrightarrow x^2-x-6x+6=0\)
\(\Leftrightarrow x\left(x-1\right)-6\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-6\right)=0\)
\(\Leftrightarrow\) x - 1 = 0 hoặc x - 6 = 0
\(\Leftrightarrow\) x = 1 hoặc x = 6
Vậy tập nghiệm của phương trình là S = { 1 ; 6 }
2) \(x^4-4x^3+12x-9=0\)
\(\Leftrightarrow x^4-4x^3+3x^2-3x^2+12x-9=0\)
\(\Leftrightarrow x^2\left(x^2-4x+3\right)-3\left(x^2-4x+3\right)=0\)
\(\Leftrightarrow\left(x^2-4x+3\right)\left(x^2-3\right)=0\)
\(\Leftrightarrow\left(x^2-3x-x+3\right)\left(x^2-3\right)=0\)
\(\Leftrightarrow\left[x\left(x-3\right)-\left(x-3\right)\right]\left(x^2-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-1\right)\left(x^2-3\right)=0\)
\(\Leftrightarrow\)x - 3 = 0 hoặc x - 1 = 0 hoặc x2 - 3 = 0
\(\Leftrightarrow\)x = 3 hoặc x = 1 hoặc x =+ - \(\sqrt{3}\)
Vậy tập nghiệm của phương trình là S = { 3 ; 1 ; + - \(\sqrt{3}\) }
![](https://rs.olm.vn/images/avt/0.png?1311)
b. sửa đề
\(6x^4+25x^3+12x-25x^2+6=0\)
\(\Leftrightarrow6x^4+12x^3+13x^3+26x^2-14x^2-28x+3x+6=0\)
\(\Leftrightarrow6x^3\left(x+2\right)+13x^2\left(x+2\right)-14x\left(x+2\right)+3\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(6x^3+13x^2-14x+3\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+3\right)\left(2x-1\right)\left(3x-1\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-2\\x=-3\\x=\dfrac{1}{2}\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy........
Bài 1 : Giải phương trình
a) (x + 3)4 + (x + 5)4 = 16
Đặt : x + 3 = t
=> x + 5 = x + 3 + 2 = t + 2
Thay x + 3 = t và x + 5 = t + 2 vào phương trình, ta có :
t4 + (t + 2)4 = 16
<=> 2t4 + 8t3 + 24t2 + 32t + 16 = 16
<=> 2(t4 + 4t3 + 12t2 + 16t) = 0
<=> t4 + 4t3 + 12t2 + 16t = 0
<=> (t + 2) . t . (t2 + 2y + 4) = 0
TH1 : t = 0
TH2 : t + 2 = 0 <=> t = -2
TH3 : t2 + 2y + 4 = 0 (vô nghiệm => loại)
Nên t = 0 hoặc t = -2
hay x + 3 = -2 hoặc x + 3 = 0
<=> x = -5 hoặc x = -3
\(S=\left\{-5;-3\right\}\)
b) 6x4 + 25x3 + 12x2 - 25x + 6 = 0
<=> 6x4 + 12x3 + 13x3 + 26x2 - 14x2 - 28x + 3x + 6 = 0
<=> 6x3 (x + 2) + 13x2 (x + 2) - 14x (x + 2) + 3(x + 2) = 0
<=> (x + 2)(6x3 + 13x2 - 14x + 3) = 0
<=> (x + 2)(6x3 + 18x2 - 5x2 - 15x + x + 3) = 0
\(\Leftrightarrow\left(x+2\right)[6x^2\left(x+3\right)-5x\left(x+3\right)+\left(x+3\right)]=0\)
<=> (x + 2)(x + 3) (6x2 - 5x + 1) = 0
<=> (x + 2)(x + 3)(2x - 1)(3x - 1) = 0
TH1 : x + 2 = 0 <=> x = -2
TH2 : x + 3 = 0 <=> x = -3
TH3 : 2x - 1 = 0 <=> 2x = 1 <=> x = \(\dfrac{1}{2}\)
TH4 : 3x - 1 = 0 <=> 3x = 1 <=> 3x = \(\dfrac{1}{3}\)
\(S=\left\{-2;-3;\dfrac{1}{2};\dfrac{1}{3}\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)
\(3x^2+12x-66=0\)
\(\Leftrightarrow x^2+4x-22=0\)
\(\Leftrightarrow x^2+4x+4=26\Leftrightarrow (x+2)^2=26\)
\(\Rightarrow x+2=\pm \sqrt{26}\Rightarrow x=-2\pm \sqrt{26}\)
b)
\(9x^2-30x+225=0\)
\(\Leftrightarrow (3x)^2-2.3x.5+25+200=0\)
\(\Leftrightarrow (3x-5)^2=-200< 0\) (vô lý nên pt vô nghiệm)
c)
\(x^2+3x-10=0\)
\(\Leftrightarrow x^2-2x+5x-10=0\)
\(\Leftrightarrow x(x-2)+5(x-2)=0\Leftrightarrow (x+5)(x-2)=0\)
\(\Rightarrow x=-5\) hoặc $x=2$
d)
$3x^2-7x+1=0$
$\Leftrightarrow 3(x^2-\frac{7}{3}x)+1=0$
$\Leftrightarrow 3(x^2-\frac{7}{3}x+\frac{7^2}{6^2})=\frac{37}{12}$
$\Leftrightarrow 3(x-\frac{7}{6})^2=\frac{37}{12}$
$\Leftrightarrow (x-\frac{7}{6})^2=\frac{37}{36}$
$\Rightarrow x-\frac{7}{6}=\frac{\pm \sqrt{37}}{6}$
$\Rightarrow x=\frac{7\pm \sqrt{37}}{6}$
e)
$3x^2+7x+2=0$
$\Leftrightarrow 3(x^2+\frac{7}{3}x+\frac{7^2}{6^2})=\frac{25}{12}$
$\Leftrightarrow 3(x+\frac{7}{6})^2=\frac{25}{12}$
$\Leftrightarrow (x+\frac{7}{6})^2=\frac{25}{36}$
$\Rightarrow x+\frac{7}{6}=\pm \frac{5}{6}$
$\Rightarrow x=\frac{-1}{3}$ hoặc $x=-2$
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(3x^3-12x=0\)
=> \(3x\left(x^2-4\right)=0\)
=> \(\orbr{\begin{cases}3x=0\\x^2-4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\pm2\end{cases}}\)
b) \(x^2\left(x-3\right)+12-4x=0\)
=> \(x^2\left(x-3\right)+\left(-4x+12\right)=0\)
=> \(x^2\left(x-3\right)-4x+12=0\)
=> \(x^2\left(x-3\right)-4\left(x-3\right)=0\)
=> \(\left(x-3\right)\left(x^2-4\right)=0\Rightarrow\orbr{\begin{cases}x=3\\x=\pm2\end{cases}}\)
c) \(\left(3x-1\right)^2-\left(2x-3\right)^2=0\)
=> \(\left[3x-1-\left(2x-3\right)\right]\left(3x-1+2x-3\right)=0\)
=> \(\left(3x-1-2x+3\right)\left(3x-1+2x-3\right)=0\)
=> \(\left(x+2\right)\left(5x-4\right)=0\Rightarrow\orbr{\begin{cases}x=-2\\x=\frac{4}{5}\end{cases}}\)
d) \(x^2-4x-21=0\)
=> \(x^2+3x-7x-21=0\)
=> \(x\left(x+3\right)-7\left(x+3\right)=0\)
=> (x + 3)(x - 7) = 0 => x = -3 hoặc x = 7
e) 3x2 - 7x - 10 = 0
=> 3x2 + 3x - 10x - 10 = 0
=> 3x(x + 1) - 10(x + 1) = 0
=> (x + 1)(3x - 10) = 0
=> x = -1 hoặc x = 10/3
a) \(3x^3-12x=0\)
\(\Leftrightarrow3x\left(x^2-4\right)=0\)
\(\Leftrightarrow3x\left(x-2\right)\left(x+2\right)=0\)
\(\Rightarrow x\in\left\{-2;0;2\right\}\)
b) \(x^2\left(x-3\right)+12-4x=0\)
\(\Leftrightarrow x^2\left(x-3\right)-4\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-3\right)=0\)
\(\Leftrightarrow x\in\left\{-2;2;3\right\}\)
c) \(\left(3x-1\right)^2-\left(2x-3\right)^2=0\)
\(\Leftrightarrow\left(x+2\right)\left(5x-4\right)=0\)
\(\Leftrightarrow x\in\left\{-2;\frac{4}{5}\right\}\)
x3 - 7x2 + 12x = 0
=> x ( x 2 - 7 x + 12 ) = 0
=> x ( x 2 - 4x - 3x + 12 ) = 0
=> x ( x - 4 ) ( x - 3 ) = 0
=> \([\begin{cases}x=0\\x=4\\x=3\end{cases}\)
x3 - 7x2 + 12x = 0
<=>x(x2-7x+12)=0
<=> x (x2-3x-4x+12)=0
<=>x(x2-3x)-(4x-12)=0
<=>x.(x(x-3)-4(x-3))=0
<=>x(x-3)(x-4)=0
<=>x=0
\(\orbr{\begin{cases}x-3=0\\x-4=0\end{cases}}\)
<=>\(\orbr{\begin{cases}x=3\\x=4\end{cases}}\)
Vậy x =0,x=3,x=4