\(x^3-6x^2+12x+19=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 5 2021

\(\Leftrightarrow x^3-6x^2+12x-8=-27\)

\(\Leftrightarrow\left(x-2\right)^3=\left(-3\right)^3\)

\(\Leftrightarrow x-2=-3\)

\(\Leftrightarrow x=-1\)

5 tháng 5 2021

x3+6x^2+12x−19=0

(x^3+6x^2+12x+8)−27=0

(x+2)^3=3

x+2=3

x=1

Vậy...

 

 

18 tháng 8 2021

1) <=> x2 - 4x - x2 + 8 = 0 <=> x2 - 4x + 8 =  0 

Dễ thấy phương trình vô nghiệm vì x2 - 4x + 8 = ( x - 2 )2 + 4 > 0

2) <=> ( x - 1 )3 = 0 <=> x = 1

3) <=> ( x - 2 )3 = 0 <=> x = 2

4) <=> ( 2x - 1 )3 = 0 <=> x = 1/2

15 tháng 7 2018

\(\left(\frac{x}{2}+3\right)\left(5-6x\right)+\left(12x-2\right)\left(\frac{x}{4}+3\right)=0\)

\(\Rightarrow\frac{5x}{2}-3x^2+15-18x+3x^2+36x-\frac{x}{2}-6=0\)

\(\Rightarrow\frac{5x}{2}-\frac{x}{2}+15-6-\left(18x-36x\right)=0\)

\(\Rightarrow2x+9+18x=0\)

\(\Rightarrow20x=-9\)

\(\Rightarrow x=-\frac{9}{20}\)

26 tháng 10 2020

1) x^2 - 6x = 0

⇔ x ( x - 6 ) = 0

\(\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.\)\(\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)

Vậy x = 0 hoặc x = 6

2) 2x^3 - 5x^2 - 12x = 0

⇔ 2x^3 - 8x^2 + 3x^2 - 12x = 0

⇔ 2x^2 ( x - 4 ) + 3x ( x - 4 ) = 0

⇔ ( 2x^2 + 3x ) ( x - 4 ) = 0

⇔ x ( 2x + 3 ) ( x - 4 ) = 0

\(\left[{}\begin{matrix}x=0\\2x+3=0\\x-4=0\end{matrix}\right.\)\(\left[{}\begin{matrix}x=0\\x=-1,5\\x=4\end{matrix}\right.\)

Vậy x = 0 , x = -1,5 hoặc x = 4

3) ( x + 1 ) ( x + 2 ) - ( x + 2 ) ( x + 3 ) = 0

⇔ ( x + 2 ) ( x + 1 - x - 3 ) = 0

⇔ -2 ( x + 2 ) = 0

⇔ x = - 2

Vậy x = -2

12 tháng 8 2019

b) \(7x\left(x-2\right)-\left(x-2\right)=0\) 

<=>  \(\left(7x-1\right)\left(x-2\right)=0\)

=> x=1/7  hoặc x=2

c) <=>  (2x-1)3   =0 

=> x=1/2

d)<=>  \(\left(2x-3\right)\left(2x+3\right)-x\left(2x-3\right)=0\)

<=>  \(\left(2x-3\right)\left(x+3\right)=0\)

=> x=3/2  hoặc x=-3

e) <=>\(x^2\left(x+5\right)+9\left(x+5\right)=0\)

<=> \(\left(x+5\right)\left(x^2+9\right)=0\)

=> x=-5

f) \(x^3-6x^2-x+30=0\)

<=>\(x^3+2x^2-8x^2-16x+15x+30=0\)

<=>\(x^2\left(x+2\right)-8x\left(x+2\right)+15\left(x+2\right)=0\)

<=>\(\left(x+2\right)\left(x^2-5x-3x+15\right)=0\)

<=> \(\left(x+2\right)\left(x-5\right)\left(x-3\right)=0\)

=> x=-2 hoặc x=5 hoặc x=3

16 tháng 8 2020

Đây mình trả lời với x là số thực.

1) x^2 - 6x + 10 = (x^2 - 6x + 9) + 1 = (x - 3)^2 + 1. >= 0 + 1 = 1. (Số chính phương luôn >= 0 với mọi x).

Vậy GTNN của biểu thức trên là 1. Dấu "=" xảy ra <=> x = 3.

2) x^2 - 8x + 19 = (x^2 - 8x + 16) + 3 = (x - 4)^2 + 3 >= 0 + 3 = 3.

Vậy GTNN của biểu thức trên là 1. Dấu "=" xảy ra <=> x = 4.

3) 3x^2 - 6x + 5 = (3x^2 - 6x + 3) + 2 = 3.(x - 1)^2 + 2 >= 0 + 2 = 2.

Vậy GTNN của biểu thức trên là 2. Dấu "=" xảy ra <=> x = 1.

4) x^2 + x + 1 = (x^2 + x + 1/4) + 3/4 = (x + 1/2)^2 + 3/4 >= 0 + 3/4 = 3/4.

Vậy GTNN của biểu thức trên là 3/4. Dấu "=" xảy ra <=> x = -1/2.

5) x^2 + 10x + 27 = (x^2 + 10x + 25) + 2 = (x + 5)^2 + 2 >= 0 + 2 = 2.

Vậy GTNN của biểu thức trên là 2. Dấu "=" xảy ra <=> x = -5.

6) 4x^2 + 4x + 2 = (4x^2 + 4x + 1) + 1 = (2x + 1)^2 + 1 >= 0 + 1 = 1.

Vậy GTNN của biểu thức trên là 1. Dấu "=" xảy ra <=> x = -1/2.

7) 16x^2 + 16x + 25 = (16x^2 + 16x + 4) + 21 = 4.(2x + 1)^2 + 21 >= 0 + 21 = 21.

Vậy GTNN của biểu thức trên là 21. Dấu "=" xảy ra <=> x = -1/2.

8) 9x^2 - 12x + 5 = (9x^2 - 12x + 4) + 1 = (3x - 2)^2 + 1 >= 0 + 1 = 1.

Vậy GTNN của biểu thức trên là 1. Dấu "=" xảy ra <=> x = 2/3.

9) 49x^2 - 28x + 7 = (49x^2 - 28x + 4) + 3 = (7x - 2)^2 + 3 >= 0 + 3 = 3.

Vậy GTNN của biểu thức là 3. Dấu "=" xảy ra <=> x = 2/7.

10) 30 - 6x + x^2 = (x^2 - 6x + 9) + 21 = (x - 3)^2 + 21 >= 0 + 21 = 21.

Vậy GTNN của biểu thức là 21. Dấu "=" xảy ra <=> x = 3.

11) (1/4).x^2 + x + 3 = ((1/4).x + x + 1) + 2 = ((1/2).x + 1)^2 + 2 >= 0 + 2 = 2.

Vậy GTNN của biểu thức là 2. Dấu "=" xảy ra <=> x = -2.

Lần sau nếu như đề bài yêu cầu tìm GTNN của 1 biểu thức thì bạn tìm xem biểu thức đó >= bao nhiêu nhé, và giá trị đó sẽ là GTNN của biểu thức đã cho. Còn nếu như đề bài yêu cầu tìm GTLN của 1 biểu thức thì bạn làm ngược lại.

19 tháng 7 2016

\(8x^3+12x^2+6x+1=0\Leftrightarrow8x^3+4x^2+8x^2+4x+2x+1=0\Leftrightarrow4x^2\left(2x+1\right)+4x\left(2x+1\right)+\left(2x+1\right)=0\)

\(\Leftrightarrow\left(2x+1\right)\left(4x^2+4x+1\right)=0\Leftrightarrow\left(2x+1\right)\left(2x+1\right)^2=0\Leftrightarrow\left(2x+1\right)^3=0\Leftrightarrow x=-\frac{1}{2}\)

Nếu bạn đã học hằng đẳng thức thì sẽ dễ làm được

19 tháng 7 2016

= (2x)3+3×(2x)2+3×2x×12+13​=(2x+1)3

23 tháng 7 2019

\(x^3+6x^2+12x+8=0\)

\(< =>\left(x+2\right)^3=0\)

x+2=0 suy ra x = -2

23 tháng 7 2019
https://i.imgur.com/C129nJV.jpg
25 tháng 1 2017

2x3 + 3x2 + 6x + 5 = 02

<=> 2x3 + x2 + 5x + 2x2 + x + 5 = 0

<=> x(2x2 + x + 5) + (2x2 + x + 5) = 0

<=> (2x2 + x + 5)(x + 1) = 0

<=> x + 1 = 0 (vì 2x2 + x + 5 \(\ge\) 4,875 > 0 \(\forall\) x)

<=> x = - 1

Vậy tập nghiệm của pt là \(S=\left\{-1\right\}\)

25 tháng 1 2017

b) 4x4 + 12x3 + 5x2 - 6x - 15 = 0

<=> 4x4 + 10x3 + 2x3 + 5x2 - 6x - 15 = 0

<=> 2x3(2x + 5) + x2(2x + 5) - 3(2x + 5) = 0

<=> (2x + 5)(2x3 + x2 - 3) = 0

<=> (2x + 5)(2x3 - 2x2 + 3x2 - 3) = 0

<=> (2x + 5)(x - 1)(2x2 + 3x + 3) = 0

<=> (2x + 5)(x - 1)[x2 + (x + 3/2)2 + 3/4]= 0

Mà x2 + (x + 3/2)2 + 3/4 > 0\(\forall x\)

\(\Rightarrow\left[\begin{matrix}2x+5=0\\x-1=0\end{matrix}\right.\)\(\Leftrightarrow\left[\begin{matrix}x=-\frac{5}{2}\\x=1\end{matrix}\right.\)

Vậy ...