K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 5 2018

x3 - 6x2 - 9x + 14 = 0 

<=> (x3 - x2) - 5x2 + 5x - 14x + 14 = 0 

<=> x2(x - 1) - 5x(x - 1) - 14(x - 1) = 0

<=> (x2 - 5x - 14)(x - 1) = 0

<=> (x2 + 2x - 7x - 14)(x - 1) = 0

<=> (x + 2)(x - 7)(x - 1) = 0 

<=> \(x\in\left\{1;-2;7\right\}\)

18 tháng 5 2018

\(x^3-6x^2-9x+14=0\)

\(\Leftrightarrow x^3-7x^2+x^2-7x-2x+14=0\)

\(\Leftrightarrow x^2\left(x-7\right)+x\left(x-7\right)-2\left(x-7\right)=0\)

\(\Leftrightarrow\left(x-7\right)\left(x^2+x-2\right)=0\)

\(\Leftrightarrow\left(x-7\right)\left(x+2\right)\left(x-1\right)=0\)

\(\Rightarrow x=\left\{7;-2;1\right\}\)

30 tháng 6 2017

a, \(x^2-x-14x+14=0\)

\(=>x\left(x-1\right)-14\left(x-1\right)=0\)

\(=>\left(x-14\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-14=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=14\\x=1\end{matrix}\right.\)

b, \(x^2+2x+7x+14=0\)

\(=>x\left(x+2\right)+7\left(x+2\right)=0\)

\(=>\left(x+7\right)\left(x+2\right)=0\)

\(< =>\left\{{}\begin{matrix}x+7=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-7\\x=-2\end{matrix}\right.\)

c, \(6x^2-6x-5x+5=0\)

\(=>6x\left(x-1\right)-5\left(x-1\right)=0\)

\(=>\left(6x-5\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}6x-5=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{6}\\x=1\end{matrix}\right.\)

d, \(6x^2+3x+10x+5=0\)

\(=>3x\left(2x+1\right)+5\left(2x+1\right)=0\)

\(=>\left(3x+5\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x+5=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-5}{3}\\x=\dfrac{-1}{2}\end{matrix}\right.\)

e, \(10x^2+10x+3x+3=0\)

\(=>10x\left(x+1\right)+3\left(x+1\right)=0\)

\(=>\left(10x+3\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}10x+3=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-3}{10}\\x=-1\end{matrix}\right.\)

CHÚC BẠN HỌC TỐT...

14 tháng 10 2020

a) x3 - 6x2 + 11x - 6

= ( x3 - 2x2 ) - ( 4x2 - 8x ) + ( 3x - 6 )

= x2( x - 2 ) - 4x( x - 2 ) + 3( x - 2 )

= ( x - 2 )( x2 - 4x + 3 )

= ( x - 2 )( x2 - x - 3x + 3 )

= ( x - 2 )[ x( x - 1 ) - 3( x - 1 ) ]

= ( x - 2 )( x - 1 )( x - 3 )

b) x3 - 6x2 - 9x + 14

= ( x3 - x2 ) - ( 5x2 - 5x ) - ( 14x - 14 )

= x2( x - 1 ) - 5x( x - 1 ) - 14( x - 1 )

= ( x - 1 )( x2 - 5x - 14 )

= ( x - 1 )( x2 + 2x - 7x - 14 )

= ( x - 1 )[ x( x + 2 ) - 7( x + 2 ) ]

= ( x - 1 )( x + 2 )( x - 7 )

c) x3 + 6x2 + 11x + 6

= ( x3 + 2x2 ) + ( 4x2 + 8x ) + ( 3x + 6 )

= x2( x + 2 ) + 4x( x + 2 ) + 3( x + 2 )

= ( x + 2 )( x2 + 4x + 3 )

= ( x + 2 )( x2 + x + 3x + 3 )

= ( x + 2 )[ x( x + 1 ) + 3( x + 1 ) ]

= ( x + 2 )( x + 1 )( x + 3 )

e) x6 - 9x3 + 8

Đặt t = x3

bthuc <=> t2 - 9t + 8 

            = t2 - t - 8t + 8

            = t( t - 1 ) - 8( t - 1 )

            = ( t - 1 )( t - 8 )

            = ( x3 - 1 )( x3 - 8 )

            = ( x - 1 )( x2 + x + 1 )( x - 2 )( x2 + 2x + 4 )

16 tháng 7 2018

1. a)\(x^2+x-3x-3=0\Leftrightarrow\left(x+1\right)\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\)

30 tháng 10 2018

\(x^3+6x^2+9x=0\)

\(x\left(x^2+6x+9\right)=0\)

\(x\left(x+3\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}x=0\\x=-3\end{cases}}\)

30 tháng 10 2018

x3-5x2-9x+45=0

=>(x3-5x2)-(9x-45)=0

=>x2(x-5)-9(x-5)=0

=>(x2-9)(x-5)=0

=>x2-9=0  =>x2=9  => x=3;-3

     x-5=0  =>x=5

29 tháng 10 2022

Bài 1:

a: =>9x^2-6x+1=9x^2-2x

=>-4x=-1

=>x=1/4

b: \(\Leftrightarrow x^2+6x+9-x^2-2x-3=14\)

=>4x+6=14

=>4x=8

=>x=2

Bài 2: 

a: \(=2x^2-6x+x-3-x^2+5x+3x=x^2+3x-3\)

b: =x^3-6x^2+12x-8-x^3+6x^2

=12x-8

12 tháng 8 2017

9x2-6x-3=0

=>9x2-9x+3x-3=0

=>(x-1)(9x-3)=0

=>x-1=0 hoặc 9x+3 = 0

=> x=1 hoặc x=-1/3

b. x3+9x2+27x+19=0

   x3+x2+8x2+8x+19x+19=0

(x+1)(x2+8x+19)=0

x+1=0 => x=-1 

x2+8x+19= x2+8x+16+3=(x+4)2+3 lớn hơn hoặc bằng 3., lớn hơn 0 với moị x

12 tháng 8 2017

a, \(\Rightarrow3\left(3x^2-2x-1\right)=0\)

\(\Rightarrow3x^2-2x-1=0\)

\(\Rightarrow x\left(3x-2\right)=1\)

\(\Rightarrow\orbr{\begin{cases}x=1\\3x-2=1\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x=1\end{cases}}}\)

\(\Rightarrow\orbr{\begin{cases}x=-1\\3x-2=-1\end{cases}\Rightarrow}\orbr{\begin{cases}x=-1\\x=\frac{1}{3}\end{cases}}\)

b,\(\Rightarrow x^3+3x^2+6x^2+9x+18x+19=0\)

\(\Rightarrow x^2\left(x+3\right)+3x\left(x+3\right)+18\left(x+3\right)-2=0\)

\(\Rightarrow\left(x+3\right)\left(x^2+3x+18\right)=2\)

Mk k co thoi gian. buoc tiep theo tu lam not nhe

a) Ta có: \(x^4-16x^2=0\)

\(\Leftrightarrow x^2\left(x^2-16\right)=0\)

\(\Leftrightarrow x^2\left(x-4\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2=0\\x-4=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)

Vậy: \(x\in\left\{0;4;-4\right\}\)

b) Ta có: \(9x^2+6x+1=0\)

\(\Leftrightarrow\left(3x\right)^2+2\cdot3x\cdot1+1^2=0\)

\(\Leftrightarrow\left(3x+1\right)^2=0\)

\(\Leftrightarrow3x+1=0\)

\(\Leftrightarrow3x=-1\)

hay \(x=-\frac{1}{3}\)

Vậy: \(x=-\frac{1}{3}\)

c) Ta có: \(x^2-6x=16\)

\(\Leftrightarrow x^2-6x-16=0\)

\(\Leftrightarrow x^2-8x+2x-16=0\)

\(\Leftrightarrow x\left(x-8\right)+2\left(x-8\right)=0\)

\(\Leftrightarrow\left(x-8\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-8=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\)

Vậy: \(x\in\left\{8;-2\right\}\)

d) Ta có: \(9x^2+6x=80\)

\(\Leftrightarrow9x^2+6x-80=0\)

\(\Leftrightarrow9x^2+6x+1-81=0\)

\(\Leftrightarrow\left(3x+1\right)^2-9^2=0\)

\(\Leftrightarrow\left(3x+1-9\right)\left(3x+1+9\right)=0\)

\(\Leftrightarrow\left(3x-8\right)\left(3x+10\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-8=0\\3x+10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=8\\3x=-10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{8}{3}\\x=-\frac{10}{3}\end{matrix}\right.\)

Vậy: \(x\in\left\{\frac{8}{3};-\frac{10}{3}\right\}\)

e) Ta có: \(25\left(2x-1\right)^2-9\left(x+1\right)^2=0\)

\(\Leftrightarrow\left(10x-5\right)^2-\left(3x+3\right)^2=0\)

\(\Leftrightarrow\left(10x-5-3x-3\right)\left(10x-5+3x+3\right)=0\)

\(\Leftrightarrow\left(7x-8\right)\left(13x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}7x-8=0\\13x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}7x=8\\13x=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{8}{7}\\x=\frac{2}{13}\end{matrix}\right.\)

Vậy: \(x\in\left\{\frac{8}{7};\frac{2}{13}\right\}\)

Đề bài là giải các phương trình nha :Đ

\(b,\left(2x+1\right)^2=9\)

\(\left(2x+1\right)^2=3^2\)

\(\Rightarrow\orbr{\begin{cases}2x+1=3\\2x+1=-3\end{cases}\Rightarrow\orbr{\begin{cases}2x=2\\2x=-4\end{cases}\Rightarrow}\orbr{\begin{cases}x=1\\x=-2\end{cases}}}\)

\(c,x^3+5x^2-4x-20=0\)

\(x^2\left(x+5\right)-4\left(x+5\right)=0\)

\(\left(x^2-4\right)\left(x+5\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x^2-4=0\\x+5=0\end{cases}\Rightarrow\orbr{\begin{cases}x^2=4\\x=5\end{cases}}}\)

\(\Rightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases};x=5}\)

ko phải mk lười đâu , cái này bn làm nó mới có ý nghĩa , cố gắng nốt nha ! 

13 tháng 9 2020

a) x4 - 16x2 = 0

<=> ( x2 )2 - ( 4x )2 = 0

<=> ( x2 - 4x )( x2 + 4x ) = 0

<=> [ x( x - 4 ) ][ x( x + 4 ) ] = 0

<=> x( x - 4 )x( x + 4 ) = 0

<=> x2( x - 4 )( x + 4 ) = 0

<=> \(\hept{\begin{cases}x^2=0\\x-4=0\\x+4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm4\end{cases}}\)( thay bằng dấu hoặc hộ mình nhé )

b) 9x2 + 6x + 1 = 0

<=> ( 3x )2 + 2.3x.1 + 12 = 0

<=> ( 3x + 1 )2 = 0

<=> 3x + 1 = 0

<=> 3x = -1

<=> x = -1/3

c) x2 - 6x = 16

<=> x2 - 6x - 16 = 0

<=> x2 + 2x - 8x - 16 = 0

<=> x( x + 2 ) - 8( x + 2 ) = 0

<=> ( x + 2 )( x - 8 ) = 0

<=> \(\orbr{\begin{cases}x+2=0\\x-8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=8\end{cases}}\)

d) 9x2 + 6x = 80

<=> 9x2 + 6x - 80 = 0

<=> 9x2 + 30x - 24x - 80 = 0

<=> 9x( x + 10/3 ) - 24( x + 10/3 ) = 0

<=> ( x + 10/3 )( 9x - 24 ) = 0

<=> \(\orbr{\begin{cases}x+\frac{10}{3}=0\\9x-24=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{10}{3}\\x=\frac{8}{3}\end{cases}}\)

e) Áp dụng công thức an.bn = ( ab )n ta có :

25( 2x - 1 )2 - 9( x + 1 )2 = 0

<=> 52( 2x - 1 )2 - 32( x + 1 )2 = 0 

<=> [ 5( 2x - 1 ) ]2 - [ 3( x + 1 ) ]2 = 0

<=> ( 10x - 5 )2 - ( 3x + 3 )2 = 0

<=> [ ( 10x - 5 ) - ( 3x + 3 ) ][ ( 10x - 5 ) + ( 3x + 3 ) ] = 0

<=> ( 10x - 5 - 3x - 3 )( 10x - 5 + 3x + 3 ) = 0

<=> ( 7x - 8 )( 13x - 2 ) = 0

<=> \(\orbr{\begin{cases}7x-8=0\\13x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{8}{7}\\x=\frac{2}{13}\end{cases}}\)

16 tháng 9 2020

             Bài làm :

a) x4 - 16x2 = 0

<=> ( x2 )2 - ( 4x )2 = 0

<=> ( x2 - 4x )( x2 + 4x ) = 0

<=> [ x( x - 4 ) ][ x( x + 4 ) ] = 0

<=> x( x - 4 )x( x + 4 ) = 0

<=> x2( x - 4 )( x + 4 ) = 0

 Vậy x=0 hoặc x=±4

b) 9x2 + 6x + 1 = 0

<=> ( 3x )2 + 2.3x.1 + 12 = 0

<=> ( 3x + 1 )2 = 0

<=> 3x + 1 = 0

<=> 3x = -1

<=> x = -1/3

c) x2 - 6x = 16

<=> x2 - 6x - 16 = 0

<=> x2 + 2x - 8x - 16 = 0

<=> x( x + 2 ) - 8( x + 2 ) = 0

<=> ( x + 2 )( x - 8 ) = 0

 \(\Leftrightarrow\orbr{\begin{cases}x+2=0\\x-8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=8\end{cases}}\)

d) 9x2 + 6x = 80

<=> 9x2 + 6x - 80 = 0

<=> 9x2 + 30x - 24x - 80 = 0

<=> 9x( x + 10/3 ) - 24( x + 10/3 ) = 0

<=> ( x + 10/3 )( 9x - 24 ) = 0

 \(\Leftrightarrow\orbr{\begin{cases}x+\frac{10}{3}=0\\9x-24=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{10}{3}\\x=\frac{8}{3}\end{cases}}\)

e) 25( 2x - 1 )2 - 9( x + 1 )2 = 0

<=> 52( 2x - 1 )2 - 32( x + 1 )2 = 0 

<=> [ 5( 2x - 1 ) ]2 - [ 3( x + 1 ) ]2 = 0

<=> ( 10x - 5 )2 - ( 3x + 3 )2 = 0

<=> [ ( 10x - 5 ) - ( 3x + 3 ) ][ ( 10x - 5 ) + ( 3x + 3 ) ] = 0

<=> ( 10x - 5 - 3x - 3 )( 10x - 5 + 3x + 3 ) = 0

<=> ( 7x - 8 )( 13x - 2 ) = 0

 \(\Leftrightarrow\orbr{\begin{cases}7x-8=0\\13x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{8}{7}\\x=\frac{2}{13}\end{cases}}\)