Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^6-6x^4-64x^3+12x^2-8=0\)
\(\Leftrightarrow\left(x^2-4x-2\right)\left(x^4+4x^3+12x^2-8x+4\right)=0\)
\(\Leftrightarrow\left(x^2-4x-2\right)\left[\left(x^4+4x^3+4x^2\right)+\left(8x^2-8x+\frac{8}{4}\right)+2\right]=0\)
\(\Leftrightarrow\left(x^2-4x-2\right)\left[\left(x^2+2x\right)^2+8\left(x-\frac{1}{2}\right)^2+2\right]=0\)
\(\Leftrightarrow x^2-4x-2=0\)
\(\Leftrightarrow x=2\pm\sqrt{6}\)
4x3 - 64x = 0
<=> 4x(x + 4)(x - 4) = 0
<=> \(\hept{\begin{cases}4x=0\\x+4=0\\x-4=0\end{cases}}\) <=> \(\hept{\begin{cases}x=0\\x=-4\\x=4\end{cases}}\)
=> x = 0 hoặc x = -4 hoặc x = 4
a) 9-64x^2=0
=> 64x^2 = 8
=> \(x^2=\frac{8}{64}=\frac{1}{8}\)
=> \(x=\frac{1}{\sqrt{8}}\)
b ) 25x^2 - 3 = 0
=> 25x^2 = 3
=> \(x^2=\frac{3}{25}\)
=> \(x=\frac{\sqrt{3}}{5}\)
C) 7 - 16x^2 =0
=> 16x^2 = 7
=> \(x^2=\frac{7}{16}\)
=> \(x=\frac{\sqrt{7}}{4}\)
d) 4x^2 - (x-4)^2 = 0
=> 4x^2 - x^2 + 8x - 16 =0
=> 3x^2 + 8x -16 = 0
=> ( 3x^2 + 12x ) - ( 4x +16 ) = 0
=> 3x( x + 4 ) - 4( x + 4 ) = 0
=>( x + 4 )( 3x - 4 ) = 0
=> \(\orbr{\begin{cases}x+4=0\\3x-4=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=-4\\x=\frac{4}{3}\end{cases}}\)
e) ( 3x + 4 )^2 - ( 2x - 5 )^2 = 0
=> ( 3x + 4 + 2x - 5 )( 3x + 4 - 2x + 5 ) = 0
=> ( 5x -1 ) ( x + 9 ) = 0
=> \(\orbr{\begin{cases}5x-1=0\\x+9=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{1}{5}\\x=-9\end{cases}}\)
Trả lời:
a, \(9-64x^2=0\)
\(\Leftrightarrow\left(3-8x\right)\left(3+8x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3-8x=0\\3+8x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{8}\\x=-\frac{3}{8}\end{cases}}}\)
Vậy x = 3/8; x = - 3/8 là nghiệm của pt.
b, \(25x^2-3=0\)
\(\Leftrightarrow\left(5x-\sqrt{3}\right)\left(5x+\sqrt{3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}5x-\sqrt{3}=0\\5x+\sqrt{3}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{\sqrt{3}}{5}\\x=-\frac{\sqrt{3}}{5}\end{cases}}}\)
Vậy \(x=\pm\frac{\sqrt{3}}{5}\)
c, \(7-16x^2=0\)
\(\Leftrightarrow\left(\sqrt{7}-4x\right)\left(\sqrt{7}+4x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{7}-4x=0\\\sqrt{7}+4x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{\sqrt{7}}{4}\\x=-\frac{\sqrt{7}}{4}\end{cases}}}\)
Vậy \(x=\pm\frac{\sqrt{7}}{4}\)
d, \(4x^2-\left(x-4\right)^2=0\)
\(\Leftrightarrow\left(2x-x+4\right)\left(2x+x-4\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(3x-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+4=0\\3x-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-4\\x=\frac{4}{3}\end{cases}}}\)
Vậy x = - 4; x = 4/3 là nghiệm của pt.
e, \(\left(3x+4\right)^2-\left(2x-5\right)^2=0\)
\(\Leftrightarrow\left(3x+4-2x+5\right)\left(3x+4+2x-5\right)=0\)
\(\Leftrightarrow\left(x+9\right)\left(5x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+9=0\\5x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-9\\x=\frac{1}{5}\end{cases}}}\)
Vậy x = - 9; x = 1/5 là nghiệm của pt.
a) \(\Rightarrow x^2\left(x^2-64\right)=0\Rightarrow x^2\left(x-8\right)\left(x+8\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=8\\x=-8\end{matrix}\right.\)
b) \(\Rightarrow x^2\left(x-6\right)+3x\left(x-6\right)+21\left(x-6\right)=0\Rightarrow\left(x-6\right)\left(x^2+3x+21\right)=0\)
\(\Rightarrow x=6\)
b) \(-y^8+10y^4x^3-25x^6\)
\(=-\left(y^8-10y^4x^3+25x^6\right)\)
\(=-\left[\left(y^4\right)^2-2.y^4.5x^3+\left(5x^3\right)^2\right]\)
\(=-\left(y^4-5x^3\right)^2\)
c) \(8x^3+36x^2y+54xy^2+27y^3\)
\(=\left(2x\right)^3+3.\left(2x\right)^2.3y+3.2x.\left(3y\right)^2+\left(3y\right)^3\)
\(=\left(2x+3y\right)^3\)
d) \(-y^3+12y^2x-48yx^2+64x^3\)
\(=-\left(y^3-12y^2x+48yx^2-64x^3\right)\)
\(=-\left[y^3-3.y^2.4x+3.y.\left(4x\right)^2-\left(4x\right)^3\right]\)
\(=-\left(y-4x\right)^3\)
e) \(64x^6y^4-81x^2y^2\)
\(=\left(8x^3y^2\right)^2-\left(9xy\right)^2\)
\(=\left(8x^3y^2-9xy\right)\left(8x^3y^2+9xy\right)\)
f) \(64x^6-27y^6\)
\(=\left(4x^2\right)^3-\left(3y^2\right)^3\)
\(=\left(4x^2-3y^2\right)\left[\left(4x^2\right)^2+4x^2.3y^2+\left(3y^2\right)^2\right]\)
\(=\left(4x^2-3y^2\right)\left(16x^4+12x^2y^2+9x^4\right)\)
Giải phương trình sau
a) \(3^{2x}-30.3^x+81=0\)
b) \(\left(16x^2-1\right)\left(4x+3\right)=64x^3-1\)
\(3^{2x}-30.3^x+81=0\\ \Leftrightarrow\left(3^x\right)^2-2.3^x.15+15^2=144\\ \Leftrightarrow\left(3^x-15\right)^2=144\\ \Leftrightarrow\left(3^x-15\right)^2-144=0\\ \Leftrightarrow\left(3^x-15-12\right)\left(3^x-15+12\right)=0\\ \Leftrightarrow\left(3^x-27\right)\left(3^x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}3^x-27=0\\3^x-3=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
Lời giải:
a.
$64x^2-24y^2=8(8x^2-3y^2)=8(\sqrt{8}x-\sqrt{3}y)(\sqrt{8}x+\sqrt{3}y)$
b.
$64x^3-27y^3=(4x)^3-(3y)^3=(4x-3y)(16x^2+12xy+9y^2)$
c.
$x^4-2x^3+x^2=(x^2-x)^2=[x(x-1)]^2=x^2(x-1)^2$
d.
$(x-y)^3+8y^3=(x-y)^3+(2y)^3=(x-y+2y)[(x-y)^2-2y(x-y)+(2y)^2]$
$=(x+y)(x^2-4xy+7y^2)$
a) \(64x^2-24y^2\)
\(=8\left(8x^2-3y^2\right)\)
b) \(64x^3-27y^3\)
\(=\left(4x\right)^3-\left(3y\right)^3\)
\(=\left(4x-3y\right)\left(16x^2+12xy+9y^2\right)\)
c) \(x^4-2x^3+x^2\)
\(=x^2\left(x^2-2x+1\right)\)
\(=x^2\left(x-1\right)^2\)
d) \(\left(x-y\right)^3+8y^3\)
\(=\left(x-y+2y\right)\left(x^2-2xy+y^2-2xy+2y^2+4y^2\right)\)
\(=\left(x+y\right)\left(x^2-4xy+7y^2\right)\)
b) (x-5)2 +9=0
=> (x-5)2 = -9 (vô lí)
=> Pt vô nghiệm
a)64x3+48x2+12x+1=27
<=> (4x)3 +3.(4x)2.1 +3.4x.1 +1=27
<=> (4x+1)3 =27
Mà 33 = 27
=> (4x+1)3=33
=>4x+1=3
=>4x=3-1
=>4x=2
=>x=2/4=1/2
a) 64x3 + 48x2 + 12x + 1 = 27
\(\Rightarrow\) (4x)3 + 3 . (4x)2 . 1 + 3 . 4x . 12 + 13 = 27
\(\Rightarrow\) (4x + 1)3 = 27
\(\Rightarrow\) 4x + 1 = 3
\(\Rightarrow\) 4x = 2
\(\Rightarrow\) x = 0,5
x^3-64x=0
<=>x^3-64x=(x-8)x(x+8)
=>(x-8)x(x+8)=0
Th1:x-8=0
=>x=8
Th2:x+8=0
=>x=-8
vậy pt có x=±8
x^3-64x=0
x.x.x-64x=0
=>x.x=64
Ta có:
x.x=64
x=\(\sqrt{64}\)
x=8