K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2020

Ta có x3 - 4x2 + 4x = 0

=> \(x^3-2x^2-2x^2+4x=0\)

=> x2(x - 2) - 2x(x - 2) = 0

=> (x2 - 2x)(x - 2) = 0

=> x(x - 2)(x - 2) = 0

=> x(x - 2)2 = 0

=> \(\orbr{\begin{cases}x=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

Vậy \(x\in\left\{0;2\right\}\)

31 tháng 8 2020

Bài làm:

Ta có: \(x^3-4x^2+4x=0\)

\(\Leftrightarrow x\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow x\left(x-2\right)^2=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\\left(x-2\right)^2=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

24 tháng 9 2020

            Bài làm :

a) x( 2x - 7 ) - 4x + 14 = 0

<=> x( 2x - 7 ) - 2( 2x - 7 ) = 0

<=> ( 2x - 7 )( x - 2 ) = 0

 \(\Leftrightarrow\orbr{\begin{cases}2x-7=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=2\end{cases}}\)

b) Sửa đề : 5x3 + x2 - 4x + 9 = 0

<=>( 5x3 + 5 ) + (x2 - 4x +4)=0

<=> 5(x3 + 1) + (x-2)2 = 0

<=> 5(x+1)(x2 - x +1) + (x+2)2 =0

\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-2\end{cases}}\)

c) 3x3 - 7x2 + 6x - 14 = 0

<=> 3x2( x - 7/3 ) + 6( x - 7/3 ) = 0

<=> ( x - 7/3 )( 3x2 + 6 ) = 0

 \(\Leftrightarrow\orbr{\begin{cases}x-\frac{7}{3}=0\\3x^2+6=0\end{cases}}\Leftrightarrow x=\frac{7}{3}\)

d) 5x2 - 5x = 3( x - 1 )

<=> 5x( x - 1 ) - 3( x - 1 ) = 0

<=> ( x - 1 )( 5x - 3 ) = 0

 \(\Leftrightarrow\orbr{\begin{cases}x-1=0\\5x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{3}{5}\end{cases}}\)

e) 4x2 - 25 - ( 4x - 10 ) = 0

<=> ( 2x - 5 )( 2x + 5 ) - 2( 2x - 5 ) = 0

<=> ( 2x - 5 )( 2x + 5 - 2 ) = 0

<=> ( 2x - 5 )( 2x + 3 ) = 0

 \(\Leftrightarrow\orbr{\begin{cases}2x-5=0\\2x+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-\frac{3}{2}\end{cases}}\)

f) x3 + 27 + ( x + 3 )( x - 9 ) = 0

<=> ( x + 3 )( x2 - 3x + 9 ) + ( x + 3 )( x - 9 ) = 0

<=> ( x + 3 )( x2 - 3x + 9 + x - 9 ) = 0

<=> ( x + 3 )( x2 - 2x ) = 0

<=> x( x + 3 )( x - 2 ) = 0

\(\Leftrightarrow\orbr{\begin{cases}\\\end{cases}}\begin{cases}x=0\\x=-3\\x=2\end{cases}\)

24 tháng 9 2020

a) x( 2x - 7 ) - 4x + 14 = 0

<=> x( 2x - 7 ) - 2( 2x - 7 ) = 0

<=> ( 2x - 7 )( x - 2 ) = 0

<=> \(\orbr{\begin{cases}2x-7=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=2\end{cases}}\)

b) 5x3 + x2 - 4x - 9 = 0 ( đề sai )

c) 3x3 - 7x2 + 6x - 14 = 0

<=> 3x2( x - 7/3 ) + 6( x - 7/3 ) = 0

<=> ( x - 7/3 )( 3x2 + 6 ) = 0

<=> \(\orbr{\begin{cases}x-\frac{7}{3}=0\\3x^2+6=0\end{cases}}\Leftrightarrow x=\frac{7}{3}\)( do 3x2 + 6 ≥ 6 > 0 với mọi x )

d) 5x2 - 5x = 3( x - 1 )

<=> 5x( x - 1 ) - 3( x - 1 ) = 0

<=> ( x - 1 )( 5x - 3 ) = 0

<=> \(\orbr{\begin{cases}x-1=0\\5x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{3}{5}\end{cases}}\)

e) 4x2 - 25 - ( 4x - 10 ) = 0

<=> ( 2x - 5 )( 2x + 5 ) - 2( 2x - 5 ) = 0

<=> ( 2x - 5 )( 2x + 5 - 2 ) = 0

<=> ( 2x - 5 )( 2x + 3 ) = 0

<=> \(\orbr{\begin{cases}2x-5=0\\2x+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-\frac{3}{2}\end{cases}}\)

f) x3 + 27 + ( x + 3 )( x - 9 ) = 0

<=> ( x + 3 )( x2 - 3x + 9 ) + ( x + 3 )( x - 9 ) = 0

<=> ( x + 3 )( x2 - 3x + 9 + x - 9 ) = 0

<=> ( x + 3 )( x2 - 2x ) = 0

<=> x( x + 3 )( x - 2 ) = 0

<=> x = 0 hoặc x + 3 = 0 hoặc x - 2 = 0

<=> x = 0 hoặc x = -3 hoặc x = 2

27 tháng 8 2016

cac ban giup minh nha

27 tháng 8 2016

đề câu a khó hiểu thế

16 tháng 7 2018

a)  \(x^3-x^2-5x+125\)

\(=\left(x+5\right)\left(x^2-5x+25\right)-x\left(x+5\right)\)

\(=\left(x+5\right)\left(x^2-6x+25\right)\)

b)  \(5x^2-5xy-3x+3y\)

\(=5x\left(x-y\right)-3\left(x-y\right)\)

\(=\left(x-y\right)\left(5x-3\right)\)

c)  \(x^2-2x-4y^2+1\)

\(=\left(x-1\right)^2-4y^2\)

\(=\left(x-2y-1\right)\left(x+2y-1\right)\)

21 tháng 12 2020

a) x(x - 3) + 5x = x2 - 8

=> x2 - 3x + 5x - x2 + 8 = 0

=> 2x + 8 = 0

=> 2x = -8

=> x = -4

b) 3(x + 4) - x2 - 4x = 0

=> 3(x + 4) - x(x + 4) = 0

=> (3 - x)(x + 4) = 0

=> \(\orbr{\begin{cases}3-x=0\\x+4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=-4\end{cases}}\)

Vậy \(x\in\left\{3;-4\right\}\)là giá trị cần tìm

c) 7x3 + 12x2 - 4x = 0

=> x(7x2 + 12x - 4) = 0

=> x(7x2 + 14x - 2x - 4) = 0

=> x[7x(x + 2) - 2(x + 2)] = 0

=> x(x + 2)(7x - 2) = 0

=> x = 0 hoặc x + 2 = 0 hoặc 7x - 2 = 0

=> x = 0 hoặc x = -2 hoặc x = 2/7

Vậy \(x\in\left\{0;-2;\frac{2}{7}\right\}\)là giá trị cần tìm

21 tháng 12 2020

x( x - 3 ) + 5x = x2 - 8

⇔ x2 - 3x + 5x - x2 + 8 = 0

⇔ 2x + 8 = 0

⇔ 2x = -8

⇔ x = -4

3( x + 4 ) - x2 - 4x = 0

⇔ 3( x + 4 ) - x( x + 4 ) = 0

⇔ ( x + 4 )( 3 - x ) = 0

⇔ x = -4 hoặc x = 3

7x3 + 12x2 - 4x = 0

⇔ x( 7x2 + 12x - 4 ) = 0

⇔ x( 7x2 + 14x2 - 2x - 4 ) = 0

⇔ x[ 7x( x + 2 ) - 2( x + 2 ) ] = 0

⇔ x( x + 2 )( 7x - 2 ) = 0

⇔ x = 0 hoặc x = -2 hoặc x=  2/7

16 tháng 8 2015

a)x2-20-x=0

<=>(x2-5x)+(4x-20)=0

<=>x(x-5)+4(x-5)=0

<=>(x-5)(x+4)=0

<=>x-5=0 hoặc x+4=0

<=>x=5 hoặc x=-4

b)(2x+3)2-(4x2-9)=0

<=>(2x+3)(2x+3)-(2x-3)(2x+3)=0

<=>(2x+3)(2x+3-2x+3)=0

<=>(2x+3).6=0

<=>2x+3=0

<=>2x=-3

<=>x=-1,5

c)(2x2+5x+3):(x+1)=4x-5

<=>2x2+5x+3=(4x-5)(x+1)

<=>2x2+5x+3=4x2-x-5

<=>4x2-x-5-2x2-5x-3=0

<=>2x2-6x-8=0

<=>x2-3x-4=0

<=>(x2-4x)+(x-4)=0

<=>x(x-4)+(x-4)=0

<=>(x-4)(x+1)=0

<=>x+1=0 hoặc x-4=0

<=>x=-1 hoặc x=4

27 tháng 8 2016

b, \(4x^2-25=0\)

\(\Leftrightarrow4x^2=25\)

\(\Leftrightarrow x^2=\frac{25}{4}=\left(\pm\frac{5}{2}\right)^2\)

\(\Leftrightarrow x=\pm\frac{5}{2}\)

     Vậy \(x\in\left\{\frac{5}{2};-\frac{5}{2}\right\}\)

27 tháng 8 2016

c) x3 - 4x+ 4x = 0

=> x3 - 2x2 - 2x2 + 4x = 0

=> x2.(x - 2) - 2x.(x - 2) = 0

=> (x - 2).(x2 - 2x) = 0

=> (x - 2).x.(x - 2) = 0

=> (x - 2)2.x = 0

=> (x - 2)2 = 0 hoặc x = 0

=> x - 2 = 0 hoặc x = 0

=> x = 2 hoặc x = 0

1) Ta có: \(\left(x^2-4x+4\right)\left(x^2+4x+4\right)-\left(7x+4\right)^2=0\)

\(\Leftrightarrow\left(x-2\right)^2\cdot\left(x+2\right)^2-\left(7x+4\right)^2=0\)

\(\Leftrightarrow\left[\left(x-2\right)\left(x+2\right)\right]^2-\left(7x+4\right)^2=0\)

\(\Leftrightarrow\left(x^2-4\right)^2-\left(7x+4\right)^2=0\)

\(\Leftrightarrow\left(x^2-4-7x-4\right)\left(x^2-4+7x+4\right)=0\)

\(\Leftrightarrow\left(x^2-7x-8\right)\left(x^2+7x\right)=0\)

\(\Leftrightarrow x\left(x+7\right)\left(x^2-8x+x-8\right)=0\)

\(\Leftrightarrow x\left(x+7\right)\left[x\left(x-8\right)+\left(x-8\right)\right]=0\)

\(\Leftrightarrow x\left(x+7\right)\left(x-8\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+7=0\\x-8=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-7\\x=8\\x=-1\end{matrix}\right.\)

Vậy: S={0;-7;8;-1}

2) Ta có: \(x^3-8x^2+17x-10=0\)

\(\Leftrightarrow x^3-2x^2-6x^2+12x+5x-10=0\)

\(\Leftrightarrow x^2\left(x-2\right)-6x\left(x-2\right)+5\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2-6x+5\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2-x-5x+5\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-1\right)\left(x-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-1=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=1\\x=5\end{matrix}\right.\)

Vậy: S={2;1;5}

3) Ta có: \(2x^3-5x^2-x+6=0\)

\(\Leftrightarrow2x^3-4x^2-x^2+2x-3x+6=0\)

\(\Leftrightarrow2x^2\left(x-2\right)-x\left(x-2\right)-3\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(2x^2-x-3\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(2x^2-3x+2x-3\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[x\left(2x-3\right)+\left(2x-3\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(2x-3\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\2x-3=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\2x=3\\x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{3}{2}\\x=-1\end{matrix}\right.\)

Vậy: \(S=\left\{2;\frac{3}{2};-1\right\}\)

4) Ta có: \(4x^4-4x^2-3=0\)

\(\Leftrightarrow4x^4-6x^2+2x^2-3=0\)

\(\Leftrightarrow2x^2\left(2x^2-3\right)+\left(2x^2-3\right)=0\)

\(\Leftrightarrow\left(2x^2-3\right)\left(2x^2+1\right)=0\)

\(2x^2+1>0\forall x\in R\)

nên \(2x^2-3=0\)

\(\Leftrightarrow2x^2=3\)

\(\Leftrightarrow x^2=\frac{3}{2}\)

hay \(x=\pm\sqrt{\frac{3}{2}}\)

Vậy: \(S=\left\{\sqrt{\frac{3}{2}};-\sqrt{\frac{3}{2}}\right\}\)

11 tháng 10 2020

a) \(x\left(x-2\right)-7x+14=0\)

\(\Leftrightarrow x\left(x-2\right)-7\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-7\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=7\end{cases}}\)

b) \(x^2\left(x-3\right)+12-4x=0\)

\(\Leftrightarrow x^2\left(x-3\right)-4\left(x-3\right)=0\)

\(\Leftrightarrow\left(x^2-4\right)\left(x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=3\\x^2=4\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=\pm2\end{cases}}\)

c) \(x^2+12x-13=0\)

\(\Leftrightarrow\left(x^2-x\right)+\left(13x-13\right)=0\)

\(\Leftrightarrow x\left(x-1\right)+13\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+13\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-13\end{cases}}\)

d) \(4x^2-4x=8\)

\(\Leftrightarrow x^2-x-2=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)

e) \(x^2-6x=1\)

\(\Leftrightarrow\left(x-3\right)^2=10\)

\(\Leftrightarrow\orbr{\begin{cases}x-3=\sqrt{10}\\x-3=-\sqrt{10}\end{cases}}\Rightarrow\orbr{\begin{cases}x=3+\sqrt{10}\\x=3-\sqrt{10}\end{cases}}\)

11 tháng 10 2020

a) x( x - 2 ) - 7x + 14 = 0

<=> x( x - 2 ) - 7( x - 2 ) = 0

<=> ( x - 2 )( x - 7 ) = 0

<=> \(\orbr{\begin{cases}x-2=0\\x-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=7\end{cases}}\)

b) x2( x - 3 ) + 12 - 4x = 0

<=> x2( x - 3 ) - 4( x - 3 ) = 0

<=> ( x - 3 )( x2 - 4 ) = 0

<=> \(\orbr{\begin{cases}x-3=0\\x^2-4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=\pm2\end{cases}}\)

c) x2 + 12x - 13 = 0

<=> x2 - x + 13x - 13 = 0

<=> x( x - 1 ) + 13( x - 1 ) = 0

<=> ( x - 1 )( x + 13 ) = 0

<=> \(\orbr{\begin{cases}x-1=0\\x+13=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-13\end{cases}}\)

d) 4x2 - 4x = 8

<=> 4( x2 - x ) = 8

<=> x2 - x = 2

<=> x2 - x - 2 = 0

<=> x2 + x - 2x - 2 = 0

<=> x( x + 1 ) - 2( x + 1 ) = 0

<=> ( x + 1 )( x - 2 ) = 0

<=> \(\orbr{\begin{cases}x+1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)

e) x2 - 6x = 1

<=> x2 - 6x + 9 = 1 + 9

<=> ( x - 3 )2 = 10

<=> ( x - 3 )2 = ( ±√10 )2

<=> \(\orbr{\begin{cases}x-3=\sqrt{10}\\x-3=-\sqrt{10}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=3+\sqrt{10}\\x=3-\sqrt{10}\end{cases}}\)