Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Ta có: \(\left(x^2-4x+4\right)\left(x^2+4x+4\right)-\left(7x+4\right)^2=0\)
\(\Leftrightarrow\left(x-2\right)^2\cdot\left(x+2\right)^2-\left(7x+4\right)^2=0\)
\(\Leftrightarrow\left[\left(x-2\right)\left(x+2\right)\right]^2-\left(7x+4\right)^2=0\)
\(\Leftrightarrow\left(x^2-4\right)^2-\left(7x+4\right)^2=0\)
\(\Leftrightarrow\left(x^2-4-7x-4\right)\left(x^2-4+7x+4\right)=0\)
\(\Leftrightarrow\left(x^2-7x-8\right)\left(x^2+7x\right)=0\)
\(\Leftrightarrow x\left(x+7\right)\left(x^2-8x+x-8\right)=0\)
\(\Leftrightarrow x\left(x+7\right)\left[x\left(x-8\right)+\left(x-8\right)\right]=0\)
\(\Leftrightarrow x\left(x+7\right)\left(x-8\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+7=0\\x-8=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-7\\x=8\\x=-1\end{matrix}\right.\)
Vậy: S={0;-7;8;-1}
2) Ta có: \(x^3-8x^2+17x-10=0\)
\(\Leftrightarrow x^3-2x^2-6x^2+12x+5x-10=0\)
\(\Leftrightarrow x^2\left(x-2\right)-6x\left(x-2\right)+5\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2-6x+5\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2-x-5x+5\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-1\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-1=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=1\\x=5\end{matrix}\right.\)
Vậy: S={2;1;5}
3) Ta có: \(2x^3-5x^2-x+6=0\)
\(\Leftrightarrow2x^3-4x^2-x^2+2x-3x+6=0\)
\(\Leftrightarrow2x^2\left(x-2\right)-x\left(x-2\right)-3\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x^2-x-3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x^2-3x+2x-3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[x\left(2x-3\right)+\left(2x-3\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x-3\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\2x-3=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\2x=3\\x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{3}{2}\\x=-1\end{matrix}\right.\)
Vậy: \(S=\left\{2;\frac{3}{2};-1\right\}\)
4) Ta có: \(4x^4-4x^2-3=0\)
\(\Leftrightarrow4x^4-6x^2+2x^2-3=0\)
\(\Leftrightarrow2x^2\left(2x^2-3\right)+\left(2x^2-3\right)=0\)
\(\Leftrightarrow\left(2x^2-3\right)\left(2x^2+1\right)=0\)
mà \(2x^2+1>0\forall x\in R\)
nên \(2x^2-3=0\)
\(\Leftrightarrow2x^2=3\)
\(\Leftrightarrow x^2=\frac{3}{2}\)
hay \(x=\pm\sqrt{\frac{3}{2}}\)
Vậy: \(S=\left\{\sqrt{\frac{3}{2}};-\sqrt{\frac{3}{2}}\right\}\)
1) \(x^4-8x^3+11x^2+8x-12=0\)
\(\Leftrightarrow x^4-x^3-7x^3+7x^2+4x^2-4x+12x-12=0\)
\(\Leftrightarrow x^3\left(x-1\right)-7x^2\left(x-1\right)+4x\left(x-1\right)+12\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3-7x^2+4x+12\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+x^2-8x^2-8x+12x+12\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x+1\right)-8x\left(x+1\right)+12\left(x+1\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x^2-8x+12\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x^2-2x-6x+12\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left[x\left(x-2\right)-6\left(x-2\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\\x-2=0\\x-6=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\\x=2\\x=6\end{matrix}\right.\)
Vậy ...
Sorry Ngân Chu, đoạn chia hết cho 120 thì thêm cả chia hết cho 2 nữa, nên nhân vào mới ra 120 nhé!!
Bài 1:
a, (n + 3)2 - (n - 1)2
= (n + 3 - n + 1)(n + 3 + n - 1)
= 4(2n - 2)
= 8(n - 1)
Vì 8 \(⋮\) 8 nên 8(n - 1) \(⋮\) 8 với n \(\in\) Z
b, n5 - 5n3 + 4n
= n(n4 - 5n2 + 4)
= n(n4 - n2 - 4n2 + 4)
= n[n2(n2 - 1) - 4(n2 - 1)]
= n(n2 - 1)(n2 - 4)
= n(n - 1)(n + 1)(n - 2)(n + 2)
= (n - 2)(n - 1)n(n + 1)(n + 2)
Vì (n - 2)(n - 1)n(n + 1)(n + 2) là tích của 5 số nguyên liên tiếp nên chia hết cho 3, 5, 8
Mà 3 x 5 x 8 = 120
\(\Rightarrow\) (n - 2)(n - 1)n(n + 1)(n + 2) \(⋮\) 120 hay n5 - 5n3 + 4n \(⋮\) 120 với n \(\in\) Z
Bài 2:
a, 4x(x + 1) = 8(x + 1)
\(\Leftrightarrow\) 4x(x + 1) - 8(x + 1) = 0
\(\Leftrightarrow\) (x + 1)(4x - 8) = 0
\(\Leftrightarrow\) 4(x + 1)(x - 2) = 0
\(\Leftrightarrow\) (x + 1)(x - 2) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\)
Vậy S = {-1; 2}
b, x2 - 6x + 8 = 0
\(\Leftrightarrow\) x2 - 6x + 9 - 1 = 0
\(\Leftrightarrow\) (x - 3)2 - 1 = 0
\(\Leftrightarrow\) (x - 3 - 1)(x - 3 + 1) = 0
\(\Leftrightarrow\) (x - 4)(x - 2) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=2\end{matrix}\right.\)
Vậy S = {4; 2}
c, x3 + x2 + x + 1 = 0
\(\Leftrightarrow\) x2(x + 1) + (x + 1) = 0
\(\Leftrightarrow\) (x + 1)(x2 + 1) = 0
Vì x2 + 1 > 0 với mọi x
\(\Rightarrow\) x + 1 = 0
\(\Leftrightarrow\) x = -1
Vậy S = {-1}
d, x3 - 7x - 6 = 0
\(\Leftrightarrow\) x3 - x - 6x - 6 = 0
\(\Leftrightarrow\) (x3 - x) - (6x + 6) = 0
\(\Leftrightarrow\) x(x2 - 1) - 6(x + 1) = 0
\(\Leftrightarrow\) x(x - 1)(x + 1) - 6(x + 1) = 0
\(\Leftrightarrow\) (x + 1)[x(x - 1) - 6] = 0
\(\Leftrightarrow\) (x + 1)(x2 - x - 6) = 0
\(\Leftrightarrow\) (x + 1)(x2 - 3x + 2x - 6) = 0
\(\Leftrightarrow\) (x + 1)[x(x - 3) + 2(x - 3)] = 0
\(\Leftrightarrow\) (x + 1)(x - 3)(x + 2) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x-3=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=3\\x=-2\end{matrix}\right.\)
Vậy S = {-1; 3; -2}
Câu e hình như bạn viết nhầm 2 lần số 17x thì phải, mình sửa lại rồi!!
e, 3x3 - 7x2 + 17x - 5 = 0
\(\Leftrightarrow\) 3x3 - x2 - 6x2 + 2x + 15x - 5 = 0
\(\Leftrightarrow\) (3x3 - x2) + (-6x2 + 2x) + (15x - 5) = 0
\(\Leftrightarrow\) x2(3x - 1) - 2x(3x - 1) + 5(3x - 1) = 0
\(\Leftrightarrow\) (3x - 1)(x2 - 2x + 5) = 0
\(\Leftrightarrow\) (3x - 1)(x2 - 2x + \(\frac{1}{4}\) + \(\frac{19}{4}\)) = 0
\(\Leftrightarrow\) (3x - 1)[(x - \(\frac{1}{2}\))2 + \(\frac{19}{4}\)] = 0
Vì (x - \(\frac{1}{2}\))2 + \(\frac{19}{4}\) > 0 với mọi x nên
\(\Rightarrow\) 3x - 1 = 0
\(\Leftrightarrow\) x = \(\frac{1}{3}\)
Vậy S = {\(\frac{1}{3}\)}
Bài 3:
Hình như phần a thì 16(1 - x) mới đúng chứ!!
a, x2(x - 1) + 16(1 - x)
= x2(x - 1) - 16(x - 1)
= (x - 1)(x2 - 16)
= (x - 1)(x - 4)(x + 4)
Câu b, d, g mình chịu, hình như đề sai thì phải, mình ko nghĩ ra được!!
c, x3 - 3x2 - 3x + 1
= (x3 + 1) - (3x2 + 3x)
= (x + 1)(x2 + x + 1) - 3x(x + 1)
= (x + 1)(x2 + x + 1 - 3x)
= (x + 1)(x2 - 2x + 1)
= (x + 1)(x - 1)(x - 1)
e, x4 - 13x2 + 36
= x4 - 4x2 - 9x2 + 36
= x2(x2 - 4) - 9(x2 - 4)
= (x2 - 4)(x2 - 9)
= (x - 2)(x + 2)(x - 3)(x + 3)
f, (x2 + x)2 + 4x2 + 4x - 12
= (x2 + x)2 + 4x2 + 4x + 4 - 16
= (x2 + x)2 + 4(x2 + x) + 4 - 16
= (x2 + x + 2)2 - 16
= (x2 + x + 2 - 4)(x2 + x + 2 + 4)
= (x2 + x - 2)(x2 + x + 6)
\(x^3-4x^2-17x+6x=0\)
\(\Leftrightarrow\left(x^3+4x^2\right)-\left(8x^2+32x\right)+\left(15x+60\right)=0\)
\(\Leftrightarrow x^2\left(x+4\right)-8x\left(x+4\right)+15\left(x+4\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x^2-8x+15\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x-5\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x+4=0\\x-5=0\\x-3=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-4\\x=3\\x=5\end{array}\right.\)
bấm máy tính ta có x1 = -4
x2 = 5
x3= 3