\(x^3-3x^2+2\sqrt{\left(x+2\right)^3}-6x=0\)

giải hoàn thiện cho tớ nhé

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2019

Câu 1: ĐK: x khác -1/2, y khác -2

Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=t\) Từ phương trình thứ nhất ta có:

\(t+\frac{1}{t}=2\Leftrightarrow t^2-2t+1=0\Leftrightarrow t=1\)

=> \(\sqrt[3]{\frac{2x+1}{y+2}}=1\Leftrightarrow2x+1=y+2\Leftrightarrow2x-y=1\)

Vậy nên ta có hệ phương trình cơ bản: \(\hept{\begin{cases}2x-y=1\\4x+3y=7\end{cases}}\)Em làm tiếp nhé>

21 tháng 2 2019

\(1,ĐKXĐ:\hept{\begin{cases}y\ne-2\\x\ne-\frac{1}{2}\end{cases}}\)

Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=a\left(a\ne0\right)\)

\(Pt\left(1\right)\Leftrightarrow a+\frac{1}{a}=2\)

             \(\Leftrightarrow a^2+1=2a\)

             \(\Leftrightarrow\left(a-1\right)^2=0\)

            \(\Leftrightarrow a=1\)

           \(\Leftrightarrow\sqrt[3]{\frac{2x+1}{y+2}}=1\)

25 tháng 6 2017

a)\(3x^2+6x-3=\sqrt{\frac{x+7}{3}}\)

Đk:\(x\ge-7\)

\(pt\Leftrightarrow9x^4+36x^3+18x^2-36x+9=\frac{x+7}{3}\)

\(\Leftrightarrow9x^4+36x^3+18x^2-36x+9-\frac{x+7}{3}=0\)

\(\Leftrightarrow\left(x^2+\frac{5x}{3}-\frac{4}{3}\right)\left(9x^2+21x-5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{\sqrt{69}+7}{6}\\x=\frac{\sqrt{73}-5}{6}\end{cases}}\) (thỏa)

b)\(2x^2+2x+1=\left(2x+3\right)\left(\sqrt{x^2+x+2}-1\right)\)

\(\Leftrightarrow2x^2+2x+1=\left(2x+3\right)\sqrt{x^2+x+2}-2x-3\)

\(\Leftrightarrow2x^2+4x+4=\left(2x+3\right)\sqrt{x^2+x+2}\)

\(\Leftrightarrow\frac{2x^2+4x+4}{2x+3}=\sqrt{x^2+x+2}\)

\(\Leftrightarrow\frac{2x^2+4x+4}{2x+3}-2x=\sqrt{x^2+x+2}-2x\)

\(\Leftrightarrow\frac{2x^2+4x+4}{2x+3}-2x=\frac{x^2+x+2-4x^2}{\sqrt{x^2+x+2}+2x}\)

\(\Leftrightarrow\frac{-2\left(x+2\right)\left(x-1\right)\left(3x+2\right)}{\left(2x+3\right)\left(3x+2\right)}=\frac{x^2+x+2-4x^2}{\sqrt{x^2+x+2}+2x}\)

\(\Leftrightarrow\frac{-2\left(x+2\right)\left(x-1\right)\left(3x+2\right)}{\left(2x+3\right)\left(3x+2\right)}=\frac{-\left(x-1\right)\left(3x+2\right)}{\sqrt{x^2+x+2}+2x}\)

\(\Leftrightarrow\frac{-2\left(x+2\right)\left(x-1\right)\left(3x+2\right)}{\left(2x+3\right)\left(3x+2\right)}-\frac{-\left(x-1\right)\left(3x+2\right)}{\sqrt{x^2+x+2}+2x}=0\)

\(\Leftrightarrow-\left(x-1\right)\left(3x+2\right)\left(\frac{2\left(x+2\right)}{\left(2x+3\right)\left(3x+2\right)}-\frac{1}{\sqrt{x^2+x+2}+2x}\right)=0\)

\(\Leftrightarrow x=1;x=-\frac{2}{3}\) (thỏa)

26 tháng 6 2017

mình bảo là đưa về dạng \(A^2=B^2\)hoặc \(A^2+B^2=0\)cơ, giúp mình nhé

AH
Akai Haruma
Giáo viên
25 tháng 2 2019

Câu 1:

PT \(\Leftrightarrow x^2+3x+8=(x+5)\sqrt{x^2+x+2}\)

\(\Leftrightarrow (x^2+x+2)+2(x+5)-4=(x+5)\sqrt{x^2+x+2}\)

Đặt \(\sqrt{x^2+x+2}=a; x+5=b(a\geq 0)\)

\(PT\Leftrightarrow a^2+2b-4=ba\)

\(\Leftrightarrow (a^2-4)-b(a-2)=0\)

\(\Leftrightarrow (a-2)(a+2-b)=0\Rightarrow \left[\begin{matrix} a=2\\ a+2=b\end{matrix}\right.\)

Nếu \(a=2\Rightarrow x^2+x+2=a^2=4\)

\(\Leftrightarrow x^2+x-2=0\Leftrightarrow (x-1)(x+2)=0\Rightarrow x=1; x=-2\) (đều thỏa mãn)

Nếu \(a+2=b\Leftrightarrow \sqrt{x^2+x+2}+2=x+5\)

\(\Leftrightarrow \sqrt{x^2+x+2}=x+3\)

\(\Rightarrow \left\{\begin{matrix} x+3\geq 0\\ x^2+x+2=(x+3)^2\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x+3\geq 0\\ 5x+7=0\end{matrix}\right.\Rightarrow x=\frac{-7}{5}\) (thỏa mãn)

Vậy..........

AH
Akai Haruma
Giáo viên
25 tháng 2 2019

Câu 2:

ĐKXĐ: \(x\geq 1\) hoặc \(x\leq \frac{1}{2}\)

\(10x^2-9x-8x\sqrt{2x^2-3x+1}+3=0\)

\(\Leftrightarrow 3(2x^2-3x+1)-8x\sqrt{2x^2-3x+1}+4x^2=0\)

Đặt \(\sqrt{2x^2-3x+1}=a(a\geq 0)\)

Khi đó PT \(\Leftrightarrow 3a^2-8xa+4x^2=0\)

\(\Leftrightarrow (a-2x)(3a-2x)=0\) \(\Rightarrow \left[\begin{matrix} a=2x\\ 3a=2x\end{matrix}\right.\)

Nếu \(a=\sqrt{2x^2-3x+1}=2x\Rightarrow \left\{\begin{matrix} x\geq 0\\ 2x^2-3x+1=4x^2\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} x\geq 0\\ 2x^2+3x-1=0\end{matrix}\right.\Rightarrow x=\frac{-3+\sqrt{17}}{4}\) (t/m)

Nếu \(3a=3\sqrt{2x^2-3x+1}=2x\Rightarrow \left\{\begin{matrix} x\geq 0\\ 9(2x^2-3x+1)=4x^2\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} x\geq 0\\ 14x^2-27x+9=0\end{matrix}\right.\Rightarrow x=\frac{3}{2}; x=\frac{3}{7}\) (t/m)

Vậy...........

30 tháng 6 2017

a)Đk:\(x\ge\frac{1}{2}\)

\(pt\Leftrightarrow4x^2-12x+4+4\sqrt{2x-1}=0\)

\(\Leftrightarrow\left(2x-1\right)^2-4\left(2x-1\right)-1+4\sqrt{2x-1}=0\)

Đặt \(t=\sqrt{2x-1}>0\Rightarrow\hept{\begin{cases}t^2=2x-1\\t^4=\left(2x-1\right)^2\end{cases}}\)

\(t^4-4t^2+4t-1=0\)

\(\Leftrightarrow\left(t-1\right)^2\left(t^2+2t-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}t-1=0\\t^2+2t-1=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}t=1\\t=\sqrt{2}-1\end{cases}\left(t>0\right)}\)

\(\Rightarrow\orbr{\begin{cases}x=1\\x=2-\sqrt{2}\end{cases}}\) là nghiệm thỏa pt

NV
23 tháng 6 2019

a/ ĐKXĐ:...

\(\Leftrightarrow4x^2-4x\sqrt{2x-1}-3x^2+6x-3=0\)

\(\Leftrightarrow4x\left(x-\sqrt{2x-1}\right)-3\left(x-1\right)^2=0\)

\(\Leftrightarrow\frac{4x\left(x-1\right)^2}{x+\sqrt{2x-1}}-3\left(x-1\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\\frac{4x}{x+\sqrt{2x-1}}=3\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow4x=3x+3\sqrt{2x-1}\)

\(\Leftrightarrow x=3\sqrt{2x-1}\)

\(\Leftrightarrow x^2-18x+9=0\) \(\Rightarrow9\pm6\sqrt{2}\)

Vậy pt có 3 nghiệm....

NV
23 tháng 6 2019

b/ ĐKXĐ:...

\(\Leftrightarrow4x^2-4x\sqrt{4x-3}-x^2+4x-3=0\)

\(\Leftrightarrow4x\left(x-\sqrt{4x-3}\right)-\left(x^2-4x+3\right)=0\)

\(\Leftrightarrow\frac{4x\left(x^2-4x+3\right)}{x+\sqrt{4x-3}}-\left(x^2-4x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-4x+3=0\Rightarrow x=...\\\frac{4x}{x+\sqrt{4x-3}}=1\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow4x=x+\sqrt{4x-3}\)

\(\Leftrightarrow3x=\sqrt{4x-3}\)

\(\Leftrightarrow9x^2-4x+3=0\) (vô nghiệm)

Vậy...

AH
Akai Haruma
Giáo viên
23 tháng 11 2018

Lời giải:

Đặt \(\sqrt{x+2}=a(a\geq 0)\Rightarrow 2=a^2-x\)

Khi đó pt đã cho trở thành:

\(x^3-3x^2+2a^3-3x.2=0\)

\(\Leftrightarrow x^3-3x^2+2a^3-3x(a^2-x)=0\)

\(\Leftrightarrow x^3+2a^3-3xa^2=0\)

\(\Leftrightarrow x(x^2-a^2)-2a^2(x-a)=0\)

\(\Leftrightarrow (x-a)(x^2+xa-2a^2)=0\)

\(\Leftrightarrow (x-a)[(x^2-a^2)+a(x-a)]=0\)

\(\Leftrightarrow (x-a)^2(x+2a)=0\)

TH1: \(x-a=0\Rightarrow x=a=\sqrt{x+2}\Rightarrow \left\{\begin{matrix} a\geq 0\\ x^2=x+2\end{matrix}\right.\)

\(\Rightarrow x=2\)

TH2: \(x+2a=0\Rightarrow x=-2a=-2\sqrt{x+2}\)

\(\Rightarrow \left\{\begin{matrix} x\leq 0\\ x^2=4(x+2)\end{matrix}\right.\Rightarrow x=2-2\sqrt{3}\)

Vậy PT có nghiệm \(x\in \left\{2-2\sqrt{3}; 2\right\}\)

23 tháng 11 2018

sao thầy(cô) trả lời nhanh quá vậy sao em trả lời kịp

SP không cánh mà đi