Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, -x3 + 9x2 - 27x + 27 = - ( x3 - 9x2 + 27x - 27 )
= - ( x - 3 )3
2, x2 - 3x + 2 = x2 - x - 2x + 2
= ( x2 - x ) - ( 2x - 2 )
= x ( x - 1 ) - 2 ( x -1 )
= ( x - 1 ) ( x - 2 )
Hk tốt
Với đề bài và đã có x ta chỉ cần thay x vào là được :
\(101^3-3.101^2+3.101-1=\)
\(97^3+9.97^2+27.97+27=\)
Dùng hằng đẳng thức đi bạn :)
a)\(x^3-3x^2+3x-1=\left(x-1\right)^3=\left(101-1\right)^3=100^3=1000000\)
b)\(x^3+9x^2+27x+27=\left(x+3\right)^3=\left(97+3\right)^3=100^3=1000000\)
a) 9x (3x-y) +3y (y-3x)
= 9x(3x-y)-3y(3x-y)
=(3x-y)(9x-3y)
= (3x-y)3(3x-y)
= 3(3x-y)2
b)x3 - 3x2 - 9x + 27
=x3+3x2-6x2-18x+9x+27
= (x3+3x2)-(6x2+18x)+(9x+27)
= x2(x+3)-6x(x+3)+9(x+3)
= (x+3)(x2-6x+9)
=(x+3)(x-3)2
a) \(9x\left(3x-y\right)+3y\left(y-3x\right)=9x\left(3x-y\right)-3y\left(3x-y\right)\)
=\(\left(3x-y\right)\left(9x-3y\right)\)
\(=3\left(3x-y\right)\left(3x-y\right)\)
\(=3\left(3x-y\right)^2\)
b) \(x^3-3x^2-9x+27=\left(x^3-3x^2\right)-\left(9x-27\right)\)
\(=x^2\left(x-3\right)-9\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2-9\right)\)
\(=\left(x-3\right)\left(x-3\right)\left(x+3\right)\)
=\(\left(x-3\right)^2\left(x+3\right)\)
Giải:
a) Ta có:\(P=\frac{\frac{x^2+3x}{x^3+3x^2+9x+27}+\frac{3}{x^2+9}}{\frac{1}{x-3}-\frac{6x}{x^3-3x^2+9x-27}}=\frac{\frac{x.\left(x+3\right)}{\left(x+3\right)\left(x^2+9\right)}+\frac{3}{x^2+9}}{\frac{1}{x-3}-\frac{6x}{\left(x-3\right)\left(x^2+9\right)}}=\frac{\frac{x+3}{x^2+9}}{\frac{x^2-6x+9}{\left(x-3\right)\left(x^2+9\right)}}=\frac{x+3}{x^2+9}:\frac{x-3}{x^2+9}=\frac{x+3}{x-3}\)b) Với x > 0 thì P không xác định khi x = 3 (Vì x - 3 ≠ 0)
c) Ta có:\(\frac{x+3}{x-3}=\frac{x-3+6}{x-3}=\frac{x-3}{x-3}+\frac{6}{x-3}=1+\frac{6}{x-3}\)
Để P đạt giá trị nguyên thì \(\frac{6}{x-3}\) ∈ Z ⇒ x - 3 ∈ Ư(6)=\(\left\{\pm1\pm2\pm3\pm6\right\}\)
Do đó, Ta có bảng sau:
x-3 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
x | 4 | 2 | 5 | 1 | 6 | 0 | 9 | -3 |
Vậy: P đạt giá trị nguyên ⇔ \(x=\left\{4;2;5;1;6;0;9;-3\right\}\)
a) \(x^3-3x^2-3x-1\)
\(=\left(x-1\right)^3\)
Với x=101 thì giá trị biểu thức là:
\(\left(101-1\right)^3\)
\(=100^3\)
\(=1000000\)
b) \(x^3+9x^2+27x+27\)
\(=\left(x+3\right)^3\)
Với x=97 thì giá trị biểu thức là:
\(\left(97+3\right)^3\)
\(=100^3\)
\(=1000000\)
1.
a) \(\left(-2x^3\right)\)\(\left(x^2+5x-\frac{1}{2}\right)\) = \(-2x^5\)\(-10x^4\) \(+x^3\)
b) (\(6x^3-7x^2\)\(-x+2\))\(:\left(2x+1\right)\)=\(3x^2-5x+2\)
2.
a) 9x(3x-y) + 3y (y-3x)=9x(3x-y)-3y(3x-y)
= (9x-3y)(3x-y)
= 3(3x-y)(3x-y)
= 3(3x-y)^2
b) \(x^3-3x^2\)\(-9x+27\)= \(\left(x^3-3x^2\right)\)\(-\left(9x-27\right)\)
= \(x^2\left(x-3\right)\)\(-9\left(x-3\right)\)
= \(\left(x^2-9\right)\left(x-3\right)\)
= \(\left(x+3\right)\left(x-3\right)\left(x-3\right)\)
= \(\left(x+3\right)\left(x-3\right)^2\)
Bài 1 ) a ) \(\left(-2x^3\right)\left(x^2+5x-\frac{1}{2}\right)\)
\(=-2x^5-10x^4+x^3\)
b ) \(\left(6x^3-7x^2+x+2\right):\left(2x+1\right)\)
\(=3x^2-5x+2\)
2 ) a ) \(9x\left(3x-y\right)+3y\left(y-3x\right)\)
\(=9x\left(3x-y\right)-3y\left(3x-y\right)\)
\(=\left(3x-y\right)\left(9x-3y\right)\)
\(=3\left(3x-y\right)\left(x-y\right)\)
b ) \(x^3-3x^2-9x+27\)
\(=\left(x^3-3x^2\right)-\left(9x-27\right)\)
\(=x^2\left(x-3\right)-9\left(x-3\right)\)
\(=\left(x^2-9\right)\left(x-3\right)\)
\(=\left(x-3\right)\left(x+3\right)\left(x-3\right)\)
a.\(x^3-6x^2+12x-8=0\Rightarrow\)\(\left(x-2\right)^3=0\Rightarrow x=2\)
b.\(x^3+9x^2+27x+27=0\Rightarrow\left(x+3\right)^3=0\)\(\Rightarrow x=-3\)
c. \(8x^3-12x^2+6x-1=0\)
\(\Rightarrow\left(2x-1\right)^3=0\)
\(\Rightarrow x=\frac{1}{2}\)
\(x^3-3x^2-9x+27\)
\(x^3+27-3x^2-9x\)
\(\left(x+3\right)\left(x^2-6x+9\right)-3x\left(x+3\right)\)
\(\left(x+3\right)\left(x^2-6x+9-3x\right)\)
\(\left(x+3\right)\left(x^2-9x+9\right)\)