K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

x- 3x+ 4 = 0

<=> (x - 2)2(x + 1) = 0

<=> x = 2 hoặc x = -1

6 tháng 3 2020

\(x^3\left(1-3\right)+4=0\\ =>-2x^3+4=0\\ =>-2x^3=-4\)

\(=>x^3=2\)

 còn lại tự giải nha

3 tháng 10 2016

de qua

6 tháng 8 2018

x.(2.x-1)+1/3-2/3.x=0

6 tháng 7 2018

\(1.6x\left(x-10\right)-2x+20=0\)

\(6x\left(x-10\right)-2\left(x-10\right)=0\)

\(2\left(x-10\right)\left(3x-1\right)=0\)

⇔ x = 10 hoặc x = \(\dfrac{1}{3}\)

KL....

\(2.3x^2\left(x-3\right)+3\left(3-x\right)=0\)

\(3\left(x-3\right)\left(x^2-1\right)=0\)

\(x=+-1\) hoặc \(x=3\)

KL....

\(3.x^2-8x+16=2\left(x-4\right)\)

\(\left(x-4\right)^2-2\left(x-4\right)=0\)

\(\left(x-4\right)\left(x-6\right)=0\)

\(x=4\) hoặc \(x=6\)

KL.....

\(4.x^2-16+7x\left(x+4\right)=0\)

\(\text{⇔}4\left(x+4\right)\left(2x-1\right)=0\)

\(x=-4hoacx=\dfrac{1}{2}\)

KL.....

\(5.x^2-13x-14=0\)

\(x^2+x-14x-14=0\)

\(\text{⇔}\left(x+1\right)\left(x-14\right)=0\)

\(\text{⇔}x=14hoacx=-1\)

KL......

Còn lại tương tự ( dài quá ~ )

13 tháng 1 2017

1. Ta có \(x^3+3x^2+x+3=0\)

\(\Leftrightarrow\left(x^3+3x^2\right)+\left(x+3\right)=0\)

\(\Leftrightarrow x^2\left(x+3\right)+\left(x+3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^2+1\right)=0\)

Nếu x+3=0 =>x=-3

Nếu \(x^2+1=0\) =>x\(=\varnothing\) (vì \(x^2+1>0\))

Vậy x=-3

13 tháng 1 2017

2) đặt x^2+x+1 = t

=> x^2 +x +2 =t+1

pt => t(t+1)=2

t^2 + t -2 =0

\(\Rightarrow\left[\begin{matrix}t=1\\t=-2\end{matrix}\right.\)

voi t=1 => x^2 +x+1=1

=> \(\Rightarrow\left[\begin{matrix}x=-1\\x=0\end{matrix}\right.\)

voi t=-2 => x^2+x+1=-2

=> x^2+x+3=0(vo nghiem)

cau 3 lam nhu cau 2

4) pt <=> (x^2-4)(x+3-x+1)=0

ban tu giai not nha

23 tháng 7 2017

a, \(x^4-5x^3+2x^2+10x+2=0\)

\(\Rightarrow x^4+x^3-6x^3-6x^2+8x^2+8x+2x+2=0\)

\(\Rightarrow x^3\left(x+1\right)-6x^2\left(x+1\right)+8x\left(x+1\right)+2\left(x+1\right)=0\)

\(\Rightarrow\left(x+1\right)\left(x^3-6x^2+8x+2\right)=0\)

\(x^3-6x^2+8x+2>0\) nên \(x+1=0\Rightarrow x=-1\)

Các câu còn lại tương tự!

Chúc bạn học tốt!!!

23 tháng 7 2017

tại sao lại > 0 nhỉ?

4 tháng 3 2018

\(2x^3+7x^2+7x+2=0\)

\(\Leftrightarrow\left(2x^3+7x^2+7x\right)+2=0\)

\(\Leftrightarrow x\left(2x^2+7x+7+2\right)=0\)

\(\Leftrightarrow x\left(2x^2+7x+9\right)=0\)

\(\Leftrightarrow x\left(2x^2+6x+3x+9\right)=0\)

\(\Leftrightarrow x\left[\left(2x^2+6x\right)+\left(3x+9\right)\right]=0\)

\(\Leftrightarrow x\left[2x\left(x+3\right)+3\left(x+3\right)\right]=0\)

\(\Leftrightarrow x\left(x+3\right)\left(2x+3\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x+3=0\\2x+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=-3\\x=-\dfrac{3}{2}\end{matrix}\right.\)

chúc bạn học tốt!

4 tháng 3 2018

b​ài giải không đúng yêu cầu của đề => sai

\(x^4-3x^3+4x^2-3x-1=0\)

\(\Leftrightarrow x^4+x^3+2x^3+2x^2+2x^2+2x+x+1=0\)

\(\Leftrightarrow x^3\left(x+1\right)+2x^2\left(x+1\right)+2x\left(x+1\right)+\left(x+1\right)=0\)
\(\Leftrightarrow\left(x^3+2x^2+2x+1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left(x^3+2x^2+2x+1\right)\left(x+1\right)=0\)

\(\Leftrightarrow(x^3+x^2+x^2+x+x+1)\left(x+1\right)=0\)
\(\Leftrightarrow[x^2\left(x+1\right)+x\left(x+1\right)+\left(x+1\right)]\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2+x+1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)^2\left(x^2+x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}(x+1)^2=0\\x^2+x+1=0\end{cases}}\Rightarrow\hept{\begin{cases}x+1=0\\\varnothing\end{cases}}\Rightarrow x=-1\)

11 tháng 3 2020

a)  \(x^4-x^2-2=0\)

\(\Leftrightarrow x^4-2x^2+x^2-2=0\)

\(\Leftrightarrow x^2\left(x^2-2\right)+\left(x^2-2\right)=0\)

\(\Leftrightarrow\left(x^2-2\right)\left(x^2+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2-2=0\left(tm\right)\\x^2+1=0\left(ktm\right)\end{cases}}\)

\(\Leftrightarrow x^2=2\)

\(\Leftrightarrow x=\pm\sqrt{2}\)

Vậy tập nghiệm của phương trình là \(S=\left\{\sqrt{2};-\sqrt{2}\right\}\)

b) \(\left(x+1\right)^4-\left(x^2+2\right)^2=0\)

\(\Leftrightarrow\left(x^2+2x+1\right)^2=\left(x^2+2\right)^2\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+2x+1=x^2+2\\x^2+2x+1=-x^2-2\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}2x-1=0\\2x^2+2x+3=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\left(tm\right)\\2\left(x+\frac{1}{2}\right)^2+\frac{5}{2}=0\left(ktm\right)\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{\frac{1}{2}\right\}\)

c) \(3x^2-2x-8=0\)

\(\Leftrightarrow3x^2-6x+4x-8=0\)

\(\Leftrightarrow3x\left(x-2\right)+4\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(3x+4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\3x+4=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-\frac{4}{3}\end{cases}}\)

d) \(2x^3-3x^2+3x+8=0\)

\(\Leftrightarrow2x^3+2x^2-5x^2-5x+8x+8=0\)

\(\Leftrightarrow2x^2\left(x+1\right)-5x\left(x+1\right)+8\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(2x^2-5x+8\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\2x^2-5x+8=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-1\\2\left(x-\frac{5}{4}\right)^2+\frac{39}{8}=0\left(ktm\right)\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{-1\right\}\)

11 tháng 3 2020

e) \(x^3-0,25x=0\)

\(\Leftrightarrow x\left(x^2-0,25\right)=0\)

\(\Leftrightarrow x\left(x-0,5\right)\left(x+0,5\right)=0\)

\(\Leftrightarrow\)\(x=0\)

hoặc \(x-0,5=0\)

hoặc \(x+0,5=0\)

\(\Leftrightarrow\)\(x=0\)

hoặc \(x=0,5\)

hoặc \(x=-0,5\)

Vậy tập nghiệm của phương trình là \(S=\left\{0;0,5;-0,5\right\}\)

f) \(x^4+2x^3+x^2=0\)

\(\Leftrightarrow x^2\left(x^2+2x+1\right)=0\)

\(\Leftrightarrow x^2\left(x+1\right)^2=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{0;-1\right\}\)

g) \(x^3-1=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x^2+x+1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\left(tm\right)\\\left(x+\frac{1}{2}\right)^2+\frac{3}{4}=0\left(ktm\right)\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{1\right\}\)

h) \(6x^2-7x+2=0\)

\(\Leftrightarrow6x^2-3x-4x+2=0\)

\(\Leftrightarrow3x\left(2x-1\right)-2\left(2x-1\right)=0\)

\(\Leftrightarrow\left(3x-2\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}3x-2=0\\2x-1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=\frac{1}{2}\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{\frac{2}{3};\frac{1}{2}\right\}\)

18 tháng 3 2020

rrrrrrrr\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)

NV
7 tháng 9 2020

f/

\(\Leftrightarrow3x\left(x-4\right)+12\left(x-4\right)=0\)

\(\Leftrightarrow3\left(x+4\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)

g/

\(\Leftrightarrow\left(2x-1\right)\left(5-3x\right)-\left(x+2\right)\left(5-3x\right)=0\)

\(\Leftrightarrow\left(5-3x\right)\left(2x-1-x-2\right)=0\)

\(\Leftrightarrow\left(5-3x\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\frac{5}{3}\end{matrix}\right.\)

NV
7 tháng 9 2020

d/

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)-\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

e/

\(\Leftrightarrow x^2-x-3x+3=0\)

\(\Leftrightarrow x\left(x-1\right)-3\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)