K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2018

 f (x) = x ^ 3 - 3x - 2 
f (-1) = (-1) ^ 3 -3 (-1) - 2 = -1 + 3 - 2 = 0 

x + 1 là một nhân tố 

Bằng phép chia: 
x ^ 3 - 3x - 2 
= (x + 1) (x ^ 2 - x - 2) 
= (x + 1) (x ^ 2 - 2x + x - 2) 
= (x + 1 ) (x (x-2) +1 (x-2)) 
= (x + 1) (x + 1) (x-2) 
= (x-2) (x + 1) ^ 2 

x = {-1 , -1, 2} Gốc đôi tại x = -1

4 tháng 10 2018

\(x^3-3x+2=0\)

\(x^3-x-2x+2=0\)

\(x\left(x^2-1\right)-2\left(x-1\right)=0\)

\(x\left(x-1\right)\left(x+1\right)-2\left(x-1\right)=0\)

\(\left(x-1\right)\left[x\left(x+1\right)-2\right]=0\)

\(\left(x-1\right)\left(x^2+x-2\right)=0\)

\(\left(x-1\right)\left(x^2-x+2x-2\right)=0\)

\(\left(x-1\right)\left[x\left(x-1\right)+2\left(x-1\right)\right]=0\)

\(\left(x-1\right)\left(x+2\right)\left(x-1\right)=0\)

\(\left(x-1\right)^2\left(x+2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-1=0\\x+2=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)

Vậy,..........

\(a,x^3+3x^2+3x=0\)

\(\Leftrightarrow x\left(x^2+3x+3\right)=0\)

\(\Leftrightarrow x=0\) Vì \(x^2+3x+3>0\forall x\)

\(b,x^3-3x^2+3x=0\)

\(\Leftrightarrow x\left(x^2-3x+3\right)=0\)

\(\Leftrightarrow x=0\)

\(c,\) bạn làm tương tự nha

30 tháng 6 2019

c, x^3 + 6x^2 + 12x = 0

=> x(x^2 + 6x + 12) = 0

=> x(x^2 + 6x + 9 + 3) = 0

=> x[(x + 3)^2 + 3) = 0

=> x = 0 hoặc (x + 3)^2 + 3 = 0

=> x = 0 hoặc (x + 3)^2 = -3 (loại vì (x+3)^2 > 0)

vậy x = 0

a, x^3 + 3x^2 + 3x = 0

=> x(x^2 + 3x + 3) = 0

=>x(x^2 + 3x + 2,25 + 0,75) = 0

=> x[(x + 1,5)^2 + 0,75)] = 0

=> x = 0 hoặc (x + 1,5)^2 + 0,75 = 0

=> x = 0 hoặc (x + 1,5)^2 = -0,75 (loại)

vậy x = 0

b, x^3 - 3x^2 + 3x = 0

=> x(x^2 - 3x + 3) = 0

=> x(x^2 - 3x + 2,25 + 0,75) = 0

=> x[(x - 1,5)^2 + 0,75] = 0

=> x = 0 hoặc (x-1,5)^2 + 0,75 = 0 

=> x = 0 hoặc (x - 1,5)^2 = -0,75 (loại) 

vậy x = 0

3 tháng 10 2016

de qua

6 tháng 8 2018

x.(2.x-1)+1/3-2/3.x=0

6 tháng 7 2018

\(1.6x\left(x-10\right)-2x+20=0\)

\(6x\left(x-10\right)-2\left(x-10\right)=0\)

\(2\left(x-10\right)\left(3x-1\right)=0\)

⇔ x = 10 hoặc x = \(\dfrac{1}{3}\)

KL....

\(2.3x^2\left(x-3\right)+3\left(3-x\right)=0\)

\(3\left(x-3\right)\left(x^2-1\right)=0\)

\(x=+-1\) hoặc \(x=3\)

KL....

\(3.x^2-8x+16=2\left(x-4\right)\)

\(\left(x-4\right)^2-2\left(x-4\right)=0\)

\(\left(x-4\right)\left(x-6\right)=0\)

\(x=4\) hoặc \(x=6\)

KL.....

\(4.x^2-16+7x\left(x+4\right)=0\)

\(\text{⇔}4\left(x+4\right)\left(2x-1\right)=0\)

\(x=-4hoacx=\dfrac{1}{2}\)

KL.....

\(5.x^2-13x-14=0\)

\(x^2+x-14x-14=0\)

\(\text{⇔}\left(x+1\right)\left(x-14\right)=0\)

\(\text{⇔}x=14hoacx=-1\)

KL......

Còn lại tương tự ( dài quá ~ )

23 tháng 9 2018

1,=\(x^2-3x-2x^2+6x=-x^2+3x\)

2,=\(3x^2-x-5+15x=3x^2+14x-5\)

3,=\(5x+15-6x^2-6x=-6x^2-x+15\)

4,=\(4x^2+12x-x-3=4x^2+11x-3\)

5: =>(x+5)^3=0

=>x+5=0

=>x=-5

6: =>(2x-3)^2=0

=>2x-3=0

=>x=3/2

7: =>(x-6)(x-10)=0

=>x=10 hoặc x=6

8: \(\Leftrightarrow x^3-12x^2+48x-64=0\)

=>(x-4)^3=0

=>x-4=0

=>x=4

15 tháng 8 2020

a, 15x3 - 15x = 0    

15x(x2-1)=0

15x=0 hoặc x2-1=0  (tự tính nhoa)

b,3x2-6x+3=0

3(x2-2x+1)=0

x-2x+1=0:3=3

x2-2x=3-1=2

x(x-2)=0

x=0 hoặc x-2=0 (tự tính nhoa)

15 tháng 8 2020

Bài làm

a) 15x3-15x=0

<=> 15x( x2 - 1 ) = 0

<=> \(\orbr{\begin{cases}15x=0\\x^2-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}}\)

Vậy x = { 0; + 1 }

b) 3x- 6x + 3 = 0

<=> 3( x2 - 2x + 1 ) = 0

<=> x2 - 2x + 1 = 0

<=> ( x - 1 )2 = 0

<=> x - 1 = 0

<=> x = 1

Vậy x = 1

c) 5(x - 1) - 3x(1 - x) = 0

<=> 5(x - 1) + 3x(x - 1) = 0

<=> (5 + 3x)(x - 1) = 0

<=> \(\orbr{\begin{cases}5+3x=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-\frac{5}{3}\\x=1\end{cases}}}\)

Vậy x = { -5/3; 1 }

e) -7(x + 2) = 2x(x + 2) 

<=> -7(x + 2 ) - 2x( x + 2 ) = 0

<=> (x + 2)(-7 - 2x) = 0

<=> \(\orbr{\begin{cases}x+2=0\\-7-2x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-\frac{7}{2}\end{cases}}}\)

Vậy x = { -2; x = -7/2 }

f)(2x - 3)(3x + 5) = (x - 1)(3x + 5)

<=> (2x - 3)(3x + 5) - (x - 1)(3x + 5) = 0

<=> (3x + 5)(2x - 3 - x + 1) = 0

<=> (3x + 5)(x - 2) = 0

<=> \(\orbr{\begin{cases}3x+5=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-\frac{5}{3}\\x=2\end{cases}}}\)

Vậy x = { -5/3; 2 }

27 tháng 9 2020

a) \(3x^3-12x=0\)

=> \(3x\left(x^2-4\right)=0\)

=> \(\orbr{\begin{cases}3x=0\\x^2-4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\pm2\end{cases}}\)

b) \(x^2\left(x-3\right)+12-4x=0\)

=> \(x^2\left(x-3\right)+\left(-4x+12\right)=0\)

=> \(x^2\left(x-3\right)-4x+12=0\)

=> \(x^2\left(x-3\right)-4\left(x-3\right)=0\)

=> \(\left(x-3\right)\left(x^2-4\right)=0\Rightarrow\orbr{\begin{cases}x=3\\x=\pm2\end{cases}}\)

c) \(\left(3x-1\right)^2-\left(2x-3\right)^2=0\)

=> \(\left[3x-1-\left(2x-3\right)\right]\left(3x-1+2x-3\right)=0\)

=> \(\left(3x-1-2x+3\right)\left(3x-1+2x-3\right)=0\)

=> \(\left(x+2\right)\left(5x-4\right)=0\Rightarrow\orbr{\begin{cases}x=-2\\x=\frac{4}{5}\end{cases}}\)

d) \(x^2-4x-21=0\)

=> \(x^2+3x-7x-21=0\)

=> \(x\left(x+3\right)-7\left(x+3\right)=0\)

=> (x + 3)(x - 7) = 0 => x = -3 hoặc x = 7

e) 3x2 - 7x - 10 = 0

=> 3x2 + 3x - 10x - 10 = 0

=> 3x(x + 1) - 10(x + 1) = 0

=> (x + 1)(3x - 10) = 0

=> x = -1 hoặc x = 10/3

27 tháng 9 2020

a) \(3x^3-12x=0\)

\(\Leftrightarrow3x\left(x^2-4\right)=0\)

\(\Leftrightarrow3x\left(x-2\right)\left(x+2\right)=0\)

\(\Rightarrow x\in\left\{-2;0;2\right\}\)

b) \(x^2\left(x-3\right)+12-4x=0\)

\(\Leftrightarrow x^2\left(x-3\right)-4\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-3\right)=0\)

\(\Leftrightarrow x\in\left\{-2;2;3\right\}\)

c) \(\left(3x-1\right)^2-\left(2x-3\right)^2=0\)

\(\Leftrightarrow\left(x+2\right)\left(5x-4\right)=0\)

\(\Leftrightarrow x\in\left\{-2;\frac{4}{5}\right\}\)

27 tháng 9 2020

Ta có : 3x3 - 12x = 0

=> 3x(x2 - 4) = 0

=> x(x - 2)(x + 2) = 0

=> \(x\in\left\{0;2;-2\right\}\)

b) x2(x - 3) + 12 - 4x = 0

=> x2(x - 3) - 4(x - 3) = 0

=> (x2 - 4)(x - 3) = 0

=> \(\orbr{\begin{cases}x^2-4=0\\x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x^2=4\\x=3\end{cases}}\Rightarrow\orbr{\begin{cases}x=\pm2\\x=3\end{cases}}\)

Vậy \(x\in\left\{-2;2;3\right\}\)

c) (3x - 1)2 - (2x - 3)2 = 0

=> (3x - 1 - 2x + 3)(3x - 1 + 2x - 3) = 0

=> (x + 2)(5x - 4) = 0

=> \(\orbr{\begin{cases}x+2=0\\5x-4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-2\\x=0,8\end{cases}}\)

Vậy \(x\in\left\{-2;0,8\right\}\)

d) x2 - 4x - 21 = 0

=> x2 - 7x + 3x - 21 = 0

=> x(x - 7) + 3(x - 7) = 0

=> (x + 3)(x - 7) = 0

=> \(\orbr{\begin{cases}x+3=0\\x-7=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-3\\x=7\end{cases}}\)

Vậy \(x\in\left\{-3;7\right\}\)

e) 3x2 - 7x - 10 = 0

=> 3x2 + 3x - 10x - 10 = 0

=> 3x(x + 1) - 10(x + 1) = 0

=> (3x - 10)(x + 1) = 0

=> \(\orbr{\begin{cases}3x-10=0\\x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{10}{3}\\x=-1\end{cases}}\)

Vậy \(x\in\left\{\frac{10}{3};-1\right\}\)

21 tháng 2 2020
https://i.imgur.com/prSNNlI.jpg
21 tháng 2 2020

Mình giải kĩ lại câu cuối nha.

\(\left(3x+5\right).\left(x^2+x+1\right)=0\)

+ Vì \(x^2+x+1>0\) \(\forall x.\)

\(\Rightarrow x^2+x+1\ne0.\)

\(\Leftrightarrow3x+5=0\)

\(\Leftrightarrow3x=0-5\)

\(\Leftrightarrow3x=-5\)

\(\Leftrightarrow x=\left(-5\right):3\)

\(\Leftrightarrow x=-\frac{5}{3}\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{-\frac{5}{3}\right\}.\)

Chúc bạn học tốt!

1)2x3+3x2+2x+3=0

=> (2x3+3x2)+(2x+3)=0

=> x2(2x+3)+(2x+3)=0

=> (2x+3)(x2+1)=0

=>\(\hept{\begin{cases}2x+3=0\\x^2+1=0\end{cases}}\)=>\(\hept{\begin{cases}2x=-3\\x^2=-1\end{cases}}\)=>\(\hept{\begin{cases}x=\frac{-3}{2}\\vo.nghiem\end{cases}}\)

Vậy x=-3/2

2)x2-3x-18=0

=> (x2+3x)-(6x+18)=0

=> x(x+3)-6(x+3)=0

=> (x+3)(x-6)=0

=> \(\hept{\begin{cases}x+3=0\\x-6=0\end{cases}}\)=>\(\hept{\begin{cases}x=-3\\x=6\end{cases}}\)

Vậy x=-3 hoặc x=6

3)Sai đề rồi bạn, 30 thành 30x mới đúng

x3-11x2+30x=0

=> x(x2-11x+30)=0

=> x[(x2-5x)-(6x-30)]=0

=> x[x(x-5)-6(x-5)]=0

=> x(x-5)(x-6)=0

=>\(\hept{\begin{cases}x=0\\x-5=0\\x-6=0\end{cases}}\)=>\(\hept{\begin{cases}x=0\\x=5\\x=6\end{cases}}\)

Vậy x=0 hoặc x=5 hoặc x=6