Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
Đặt \(x+1=a\). Khi đó \(x+3=a+2; x-1=a-2\).
PT đã cho tương đương với:
\((a+2)^4+(a-2)^4=626\)
\(\Leftrightarrow 2a^4+48a^2+32=626\)
\(\Leftrightarrow a^4+24a^2-297=0\)
\(\Leftrightarrow (a^2+12)^2=441\)
\(\Rightarrow a^2+12=\sqrt{441}=21\) (do \(a^2+12>0)\)
\(\Rightarrow a^2=9\Rightarrow a=\pm 3\)
Nếu $a=3$ thì \(x=a-1=2\)
Nếu $a=-3$ thì $x=a-1=-4$
Câu 2:
Đặt \(2x-1=a; x-1=b\). PT đã cho tương đương với:
\(a^3+b^3+(-a-b)^3=0\)
\(\Leftrightarrow a^3+b^3-(a+b)^3=0\)
\(\Leftrightarrow a^3+b^3-[a^3+b^3+3ab(a+b)]=0\)
\(\Leftrightarrow ab(a+b)=0\Rightarrow \left[\begin{matrix} a=0\\ b=0\\ a+b=0\end{matrix}\right.\)
\(\Rightarrow \left[\begin{matrix} 2x-1=0\\ x-1=0\\ 3x-2=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{1}{2}\\ x=1\\ x=\frac{2}{3}\end{matrix}\right.\)
\(1.6x\left(x-10\right)-2x+20=0\)
⇔\(6x\left(x-10\right)-2\left(x-10\right)=0\)
⇔ \(2\left(x-10\right)\left(3x-1\right)=0\)
⇔ x = 10 hoặc x = \(\dfrac{1}{3}\)
KL....
\(2.3x^2\left(x-3\right)+3\left(3-x\right)=0\)
⇔ \(3\left(x-3\right)\left(x^2-1\right)=0\)
⇔ \(x=+-1\) hoặc \(x=3\)
KL....
\(3.x^2-8x+16=2\left(x-4\right)\)
⇔ \(\left(x-4\right)^2-2\left(x-4\right)=0\)
⇔ \(\left(x-4\right)\left(x-6\right)=0\)
⇔ \(x=4\) hoặc \(x=6\)
KL.....
\(4.x^2-16+7x\left(x+4\right)=0\)
\(\text{⇔}4\left(x+4\right)\left(2x-1\right)=0\)
⇔ \(x=-4hoacx=\dfrac{1}{2}\)
KL.....
\(5.x^2-13x-14=0\)
⇔ \(x^2+x-14x-14=0\)
\(\text{⇔}\left(x+1\right)\left(x-14\right)=0\)
\(\text{⇔}x=14hoacx=-1\)
KL......
Còn lại tương tự ( dài quá ~ )
Ví dụ 3: Giải phương trình : (4).
Giải: Ta có phương trình:
, phương trình này có nghiệm: .
Do vậy
,
và .
a) Ta có :\(2x^4-x^3-9x^2+13x-5=0=>\left(x-1\right)^3\left(2x+5\right)=0\)
=>\(\left\{\begin{matrix}\left(x-1\right)^3=0\\2x+5=0\end{matrix}\right.=>\left\{\begin{matrix}x-1=0\\2x=-5\end{matrix}\right.=>\left\{\begin{matrix}x=1\\x=-2,5\end{matrix}\right.\)
Vậy tập nghiệm của phương trình S={-2,5 ;1}
b)\(x^4-2x^3-11x^2+12x+36=0=>\left(x-3\right)^2\left(x+2\right)^2=0\)
=>\(\left\{\begin{matrix}\left(x-3\right)^2=0=>x-3=0=>x=3\\\left(x+2\right)^2=0=>x+2=0=>x=-2\end{matrix}\right.\)
Vậy tập nghiệm của pt là S={-2;3}
Câu 2 sai đề nhé
Phải là:(x-999)/99+(x-896)/101+(x-789/103)=6
a) \(x^4+2x^3-12x^2-13x+42=0\)
\(\Leftrightarrow x^4+3x^3-x^3-3x^2-9x^2-27x+14x+42=0\)
\(\Leftrightarrow x^3\left(x+3\right)-x^2\left(x+3\right)-9x\left(x+3\right)+14\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^3-x^2-9x+14\right)=0\)
\(x^4+2x^3+5x^2+4x-12=0\)
\(\Leftrightarrow x^4-x^3+3x^3-3x^2+8x^2-8x^2+12x-12=0\)
\(\Leftrightarrow x^3\left(x-1\right)+3x^2\left(x-1\right)+8x\left(x-1\right)+12\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+3x^2+8x+12\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+2x^2+x^2+2x+6x+12\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x+2\right)+x\left(x+2\right)+6\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2+x+6\right)=0\)
Ta có:
\(x^2+x+6=x^2+2.x.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{23}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{23}{4}>0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
Vậy...........
\(a,x^4-16x^2+32x-16=0\)
\(\Leftrightarrow\left(x^4-16\right)-16x\left(x-2\right)=0\)
\(\Leftrightarrow\left(x^4+4\right)\left(x-2\right)\left(x+2\right)-16x\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3+2x^2-12x+8\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-2x^2+4x^2-8x-4x+8\right)=0\)\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x-2\right)+4x\left(x-2\right)-4\left(x-2\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-2\right)\left(x^2+4x-4\right)=0\)
\(\Leftrightarrow\left(x-2\right)^2\left[\left(x+2\right)^2-8\right]=0\Rightarrow\left[{}\begin{matrix}\left(x-2\right)^2=0\\\left(x+2\right)^2-8=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x-2=0\\\left(x+2\right)^2=8\Rightarrow\left[{}\begin{matrix}x+2=\sqrt{8}\\x+2=-\sqrt{8}\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\sqrt{8}-2\\x=-\sqrt{8}-2\end{matrix}\right.\)
\(\Leftrightarrow x^3-2x^2+4x^2-8x-5x+10=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+4x-5\right)=0\)
=>(x-2)(x+5)(x-1)=0
hay \(x\in\left\{2;-5;1\right\}\)
\(x^3+2x^2-13x+10=0\)
\(\left(x^3-x^2\right)+\left(3x^2-3x\right)-\left(10x-10\right)=0\)
\(x^2\left(x-1\right)+3x\left(x-1\right)-10\left(x-1\right)=0\)
\(\left(x-1\right)\left(x^2+3x-10\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2+3x=10\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\\left(x+\dfrac{3}{2}\right)^2=\dfrac{49}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=-5\end{matrix}\right.\)