Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3-4x^2-17x+6x=0\)
\(\Leftrightarrow\left(x^3+4x^2\right)-\left(8x^2+32x\right)+\left(15x+60\right)=0\)
\(\Leftrightarrow x^2\left(x+4\right)-8x\left(x+4\right)+15\left(x+4\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x^2-8x+15\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x-5\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x+4=0\\x-5=0\\x-3=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-4\\x=3\\x=5\end{array}\right.\)
Ta có : \(x^3+8x^2+17x+10=0\)
\(\Leftrightarrow x^3+2x^2+6x^2+12x+5x+10=0\)
\(\Leftrightarrow x^2\left(x+2\right)+6x\left(x+2\right)+5\left(x+2\right)=0\)
\(\Leftrightarrow\left(x^2+6x+5\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+5\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x+5=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-5\\x=-2\end{matrix}\right.\)
Vậy \(x\in\left\{-1,-2,-5\right\}\)
trong quá trình bạn xem bài mk thấy chỗ nào sai dấu thì sửa giùm mk nha trong quá trình làm mk cx có thể sai sót nhầm lẫn nha
1) Ta có: \(\left(x^2-4x+4\right)\left(x^2+4x+4\right)-\left(7x+4\right)^2=0\)
\(\Leftrightarrow\left(x-2\right)^2\cdot\left(x+2\right)^2-\left(7x+4\right)^2=0\)
\(\Leftrightarrow\left[\left(x-2\right)\left(x+2\right)\right]^2-\left(7x+4\right)^2=0\)
\(\Leftrightarrow\left(x^2-4\right)^2-\left(7x+4\right)^2=0\)
\(\Leftrightarrow\left(x^2-4-7x-4\right)\left(x^2-4+7x+4\right)=0\)
\(\Leftrightarrow\left(x^2-7x-8\right)\left(x^2+7x\right)=0\)
\(\Leftrightarrow x\left(x+7\right)\left(x^2-8x+x-8\right)=0\)
\(\Leftrightarrow x\left(x+7\right)\left[x\left(x-8\right)+\left(x-8\right)\right]=0\)
\(\Leftrightarrow x\left(x+7\right)\left(x-8\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+7=0\\x-8=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-7\\x=8\\x=-1\end{matrix}\right.\)
Vậy: S={0;-7;8;-1}
2) Ta có: \(x^3-8x^2+17x-10=0\)
\(\Leftrightarrow x^3-2x^2-6x^2+12x+5x-10=0\)
\(\Leftrightarrow x^2\left(x-2\right)-6x\left(x-2\right)+5\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2-6x+5\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2-x-5x+5\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-1\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-1=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=1\\x=5\end{matrix}\right.\)
Vậy: S={2;1;5}
3) Ta có: \(2x^3-5x^2-x+6=0\)
\(\Leftrightarrow2x^3-4x^2-x^2+2x-3x+6=0\)
\(\Leftrightarrow2x^2\left(x-2\right)-x\left(x-2\right)-3\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x^2-x-3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x^2-3x+2x-3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[x\left(2x-3\right)+\left(2x-3\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x-3\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\2x-3=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\2x=3\\x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{3}{2}\\x=-1\end{matrix}\right.\)
Vậy: \(S=\left\{2;\frac{3}{2};-1\right\}\)
4) Ta có: \(4x^4-4x^2-3=0\)
\(\Leftrightarrow4x^4-6x^2+2x^2-3=0\)
\(\Leftrightarrow2x^2\left(2x^2-3\right)+\left(2x^2-3\right)=0\)
\(\Leftrightarrow\left(2x^2-3\right)\left(2x^2+1\right)=0\)
mà \(2x^2+1>0\forall x\in R\)
nên \(2x^2-3=0\)
\(\Leftrightarrow2x^2=3\)
\(\Leftrightarrow x^2=\frac{3}{2}\)
hay \(x=\pm\sqrt{\frac{3}{2}}\)
Vậy: \(S=\left\{\sqrt{\frac{3}{2}};-\sqrt{\frac{3}{2}}\right\}\)
a)
\(x^3-3x+2=x^3-x-2x+2=\left(x^3-x\right)-\left(2x-2\right)=x\left(x^2-1\right)-2\left(x-1\right)\)
\(=x\left(x-1\right)\left(x+1\right)-2\left(x-1\right)=\left(x-1\right)\left[x\left(x+1\right)-2\right]\)
b)
\(\left(x^3+3x^2+3x+1\right)+\left(5x^2+10x+5\right)+\left(4x+4\right)\)
\(\left(x+1\right)^3+5\left(x+1\right)^2+4\left(x+1\right)=\left(x+1\right)\left[\left(x+1\right)^2+5\left(x+1\right)+4\right]\)
bạn chỉ cần thay 17=x+1(vì 16=x mà) rồi nhân các đơn thức với đa thức và cuối cùng là triệt tiêu là tính ra ngay mà
Đặt 17 = x + 1 và 20 = x + 4, ta có:
A = x4 - 17x3 + 17x2 - 17x + 20
⇒ A = x4 - (x + 1)x3 + (x + 1)x2 - (x + 1)x + x +3
⇒ A = x4 - x4 - x3 + x3 + x2 - x2 - x + x + 3
⇒ A = 3
x3 - 9x - 8x - 24 = 0
<=> x(x2 - 9) - 8(x + 3) = 0
<=> x(x - 3)(x + 3) - 8(x + 3) = 0
<=> (x + 3)(x2 - 3x - 8) = 0
<=> \(\left(x+3\right)\left(x^2-2.\frac{3}{2}x+\frac{9}{4}-\frac{41}{4}\right)=0\)
<=> \(\left(x+3\right)\left[\left(x-\frac{3}{2}\right)^2-\left(\frac{\sqrt{41}}{2}\right)^2\right]=0\)
<=> \(\left(x+3\right)\left(x-\frac{3}{2}+\frac{\sqrt{41}}{2}\right)\left(x-\frac{3}{2}-\frac{\sqrt{41}}{2}\right)=0\)
<=> \(\orbr{\begin{cases}x=-3\\x=\frac{3\pm\sqrt{41}}{2}\end{cases}}\)