Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(8x^2+30x+7=0\)
\(\Leftrightarrow8\left(x^2+\frac{15}{4}x+7\right)=0\)
\(\Leftrightarrow x^2+\frac{1}{4}x+\frac{7}{2}x+\frac{7}{8}=0\)
\(\Leftrightarrow x\left(x+\frac{1}{4}\right)+\frac{7}{2}\left(x+\frac{1}{4}\right)=0\)
\(\Leftrightarrow\left(x+\frac{1}{4}\right)\left(x+\frac{7}{2}\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x+\frac{1}{4}=0\\x+\frac{7}{2}=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-\frac{1}{4}\\x=-\frac{7}{2}\end{array}\right.\)
b)\(x^3-11x^2+30x=0\)
\(\Leftrightarrow x\left(x^2-11x+30\right)=0\)
\(\Leftrightarrow x\left(x^2-5x-6x+30\right)=0\)
\(\Leftrightarrow x\left[x\left(x-5\right)-6\left(x-5\right)\right]=0\)
\(\Leftrightarrow x\left(x-5\right)\left(x-6\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x-5=0\\x-6=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=5\\x=6\end{array}\right.\)
a/ x2 + 3x - 18 = 0
x2 -3x + 6x - 18 = 0
x(x-3) + 6(x-3) = 0
(x-3)(x+6) = 0
Suy ra: x - 3 = 0 hoặc x + 6 = 0
hay x = 3 hoặc x = - 6
Vậy x thuộc {3;-6}.
b/ 8x2 + 30x + 7 = 0
8x2 + 2x + 28x + 7 = 0
2x(4x+1) + 7(4x+1) = 0
(4x+1)(2x+7) = 0
Suy ra: 4x + 1 = 0 hoặc 2x + 7 = 0
hay x = -1/4 hoặc x = -7/2
Vậy x thuộc {-1/4; -7/2}.
c/ x3 - 11x2 + 30x = 0
x(x2 - 11x + 30) = 0
x(x2 - 5x - 6x + 30) = 0
x.[x(x-5) - 6(x-5)] = 0
x(x-5)(x-6) = 0
Suy ra: x = 0; x - 5 = 0 hoặc x - 6 = 0
hay x = 0; x =5; x =6
Vậy x thuộc {0;5;6}.
a) \(8x^2+30x+7=0\)
\(\Rightarrow8x^2+2x+28x+7=0\)
\(\Rightarrow2x\left(4x+1\right)+7\left(4x+1\right)=0\)
\(\Rightarrow\left(2x+7\right)\left(4x+1\right)=0\)
\(\Rightarrow\)\(2x+7=0\) hoặc \(4x+1=0\)
\(\Rightarrow\)\(2x=-7\) ; \(4x=-1\)
\(\Rightarrow\)\(x=\frac{-7}{2}\) ; \(x=\frac{-1}{4}\)
Vậy \(x\in\left\{\frac{-7}{2};\frac{-1}{4}\right\}\)
b) \(x^3-11x^2+30x=0\)
\(\Rightarrow x\left(x^2-11x+30\right)=0\)
\(\Rightarrow x\left(x^2-6x-5x+30\right)=0\)
\(\Rightarrow x\left[x\left(x-6\right)-5\left(x-6\right)\right]=0\)
\(\Rightarrow x\left(x-5\right)\left(x-6\right)=0\)
\(\Rightarrow\)\(x=0\) hoặc \(x-5=0\) hoặc \(x-6=0\)
\(\Rightarrow\)\(x=0\) ; \(x=5\) ; \(x=6\)
Vậy \(x\in\left\{0;5;6\right\}\)
a)\(8x^2+30x+7=0\Leftrightarrow8x^2+2x+28x+7=0\Leftrightarrow2x\left(4x+1\right)+7\left(4x+1\right)=0\)
\(\Leftrightarrow\left(2x+7\right)\left(4x+1\right)=0\Leftrightarrow\orbr{\begin{cases}2x+7=0\\4x+1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-\frac{7}{2}\\x=-\frac{1}{4}\end{cases}}\)
b)\(x^3-11x^2+30x=0\Leftrightarrow x\left(x^2-11x+30\right)=0\Leftrightarrow x\left(x^2-5x-6x+30\right)=0\)
\(\Leftrightarrow x\left[x\left(x-5\right)-6\left(x-5\right)\right]=0\Leftrightarrow x\left(x-6\right)\left(x-5\right)=0\)
<=>x=0 hoặc x-6=0 hoặc x-5=0 <=> x=0 hoặc x=6 hoặc x=5
a)1-6x2-x =0<=>-(6x2+x-1)=0<=>6x2+x-1=0
<=>(6x2+3x)-(2x+1)=0<=>3x(2x+1)-(2x+1)=0
<=>(3x-1)(2x+1)=0
=>3x-1=0 hoặc 2x+1=0=>x=\(\dfrac13\) hoặc x=-\(\dfrac12\)
Vậy S={\(\dfrac13\);-\(\dfrac12\)}
b)12x2+13x+3=0<=>12x2+9x+4x+3=0<=>(12x2+9x)+(4x+3)=0
<=>3x(4x+3)+(4x+3)=0<=>(3x+1)(4x+3)=0
=>3x+1=0 hoặc 4x+3=0 <=>x=-\(\dfrac13 \) hoặc x=-\(\dfrac34\)
Vậy S={-\(\dfrac13 \);-\(\dfrac34 \)}
c)x3-11x2+30x=0<=>x(x2-11x+30)=0<=>x[(x2-6x)-(5x-30)]=0
<=>x[x(x-6)-5(x-6)]=0<=>x(x-5)(x-6)=0
=>x=0 hoặc x-5=0 hoặc x-6=0=>x=0 hoặc x=5 hoặc x=6
Vậy S={0;5;6}
d)Ta có:(x2+x+1)(x2+x+2)-12=0
Đặt:t=x2+x+1
Khi đó:a(a+1)-12=0<=>a2+a-12=0<=>(a2+4a)-(3a+12)=0
<=>a(a+4)-3(a+4)=0<=>(a-3)(a+4)=0
hay (x2+x-2)(x2+x+5)=0
<=>(x-1)(x+2)(x2+x+5)=0(x2+x-2=(x-1)(x+2))
=>x-1=0 hoặc x+2=0(vì x2+x+5=(x+\(\dfrac12\))2+\(\dfrac{19}{4}\)>0)
=>x=1 hoặc x=-2
Vậy S={1;-2}
e)Ta có:2x2+x+6>x2+x+6=(x+\(\dfrac12\))2+\(\dfrac{23}{4}\)>0
nên PT vô nghiệm
Vậy S=\(\varnothing\)
a) \(4x^4-21x^2y^2+y^4=\left(4x^4+4x^2y^2+y^4\right)-25x^2y^2\)
\(=\left(2x^2+y^2\right)^2-\left(5xy\right)^2=\left(2x^2-5xy+y^2\right)\left(2x^2+5xy+y^2\right)\)
b) \(x^5-5x^3+4x=x\left(x^4-5x^2+4\right)=x\left[\left(x^4-4x^2\right)-\left(x^2-4\right)\right]\)
\(=x\left[x^2\left(x^2-4\right)-\left(x^2-4\right)\right]=x\left(x^2-1\right)\left(x^2-4\right)\)
\(=x\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)\)
c ) \(x^3+5x^2+3x-9=\left(x^3-x^2\right)+\left(6x^2-6x\right)+\left(9x-9\right)\)
\(=x^2\left(x-1\right)+6x\left(x-1\right)+9\left(x-1\right)\)
\(=\left(x^2+6x+9\right)\left(x-1\right)=\left(x+3\right)^2\left(x-1\right)\)
d ) \(x^{16}+x^8-2=x^{16}-x^8+2x^8-2=x^8\left(x^8-1\right)+2\left(x^8-1\right)\)
\(=\left(x^8+2\right)\left(x^8-1\right)=\left(x^8+2\right)\left(x^4-1\right)\left(x^4+1\right)\)
\(=\left(x^8+2\right)\left(x^2-1\right)\left(x^2+1\right)\left(x^4+1\right)=\left(x^8+2\right)\left(x-1\right)\left(x+1\right)\left(x^2+1\right)\left(x^4+1\right)\)
e ) \(x^3-11x^2+30x=0\)
\(\Leftrightarrow x\left(x^2-11x+30\right)=0\)
\(\Leftrightarrow x\left[\left(x^2-5x\right)-\left(6x-30\right)\right]=0\)
\(\Leftrightarrow x\left[x\left(x-5\right)-6\left(x-5\right)\right]=0\)
\(\Leftrightarrow x\left(x-6\right)\left(x-5\right)=0\)
\(\Rightarrow x=0orx=5orx=6\) (or hoặc)
Vậy \(x\in\left\{0;5;6\right\}\)
Đặt Q là thương của phép chia . Vì đây là phép chia hết nên ta có phương trình
5x4+5x3+x2+11x+a = (x2+x+b)Q . Mà vế trái là đa thức bậc 4 nên khi chia cho đa thức bậc 2 thì thương có dạng Q = mx2+nx+h
( với m,n,h là hệ số của đa thức )
=> 5x4+5x3+x2+11x+a = (x2+x+b)(mx2+nx+h)
<=>5x4+5x3+x2+11x+a = mx4+ nx3 + hx2 + mx3 + nx2 + hx + bmx2 + bnx + bh
= mx4 + (m+n)x3 + (h+n+bm)x2 + (h+bn)x + bh
Mà theo nguyên tắc hai vế bằng nhau thì hệ số của bậc nào bằng hệ số bậc cùng bậc bên vế kia .
=> m = 5
m+n = 5 => n = 0
h+bn = 11 => h = 11
h+n+bm = 1 => b = -2
bh = a = -22
Vậy a = -22 ; b = -2 ; Q = 5x2+11
x4-30x2+31x-30 = 0
<=> x4 + ( x3 - x3 ) + ( x2 - x2 - 30x2 ) + ( 30x + x ) -30 = 0
<=> ( x4 + x3 - 30x2 ) + ( -x3 - x2 + 30x ) + ( x2 + x - 30 ) =0
<=> x2.( x2 + x - 30 ) - x.( x2 + x - 30 ) + ( x2 + x - 30 ) = 0
<=> ( x2 + x - 30 )( x2 - x + 1 ) = 0
<=> ( x2 + x - 30 )( x - 5 )( x + 6 ) = 0
Vì x2 + x - 30 = x2 + x + \(\frac{1}{4}\) - \(\frac{121}{4}\) = ( x + \(\frac{1}{2}\) )2 - \(\frac{121}{4}\) \(\ge\)- \(\frac{121}{4}\)
=> x - 5 = 0 hoặc x + 6 = 0
=> x = 5 hoặc x = -6
Vậy tập nghiệm S = { -6 ; 5 }
Bài 1
A,7x − 6x 2 − 2 = −(6x 2 − 7x + 2)
= −(6x 2 − 3x − 4x + 2)
= −[3x(2x − 1) − 2(2x − 1)] = −(3x − 2)(2x −1)
b,\(2x^2+3x-5\)
=\(2x^2-2x+5x-5\)=\(2x\left(x-1\right)+5\left(x-1\right)=\left(2x+5\right)\left(x-1\right)\)
\(=x^3-5x^2-6x^2+30x\)
\(=x^2\left(x-5\right)-6x\left(x-5\right)\)
\(=\left(x^2-6x\right)\left(x-5\right)\)
\(=x\left(x-5\right)\left(x-6\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=0\\x=5\\x=6\end{array}\right.\)
x3 - 11x2 + 30x = 0
x(x2 - 11x + 30) = 0
x(x2 - 5x - 6x + 30) = 0
x[x(x - 5) - 6(x - 5)] = 0
x(x - 5)(x - 6) = 0
\(\left[\begin{array}{nghiempt}x=0\\x-5=0\\x-6=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=0\\x=5\\x=6\end{array}\right.\)