Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) \(\left(x+y+z\right)^2=x^2+y^2+z^{2^{ }}+2xy+2yz+2zx\)
Biến đổi vế trái ta được :
\(\left(x+y+z\right)^2=\left(x+y+z\right)\left(x+y+z\right)\)
\(=x^2+xy+xz+xy+y^2+yz+zx+zy+z^2\)
\(=x^2+y^2+z^{2^{ }}+2xy+2yz+2zx\)
Vậy \(\left(x+y+z\right)^2=x^2+y^2+z^{2^{ }}+2xy+2yz+2zx\)
a ) \(\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3\)
\(=x^3-3x^2y+3xy^2-y^3+y^3-3y^2z+3yz^2-z^3+z^3-3z^2x+3zx^2-x^3\)
\(=-3x^2y+3xy^2-3y^2z+3yz^2-3z^2x+3zx^2\)
b)\(x\left(y^2-z^2\right)+z\left(x^2-y^2\right)+y\left(z^2-x^2\right)\)
=\(x\left(y^2-z^2\right)-\left(y^2-z^2+z^2-x^2\right)z+y\left(z^2-x^2\right)\)
=\(x\left(y^2-z^2\right)-z\left(y^2-z^2\right)-z\left(z^2-x^2\right)+y\left(z^2-x^2\right)\)
=\(\left(y^2-z^2\right)\left(x-z\right)+\left(z^2-x^2\right)\left(y-z\right)\)
=\(\left(y-z\right)\left(z-x\right)\left(-\left(y+z\right)+z+x\right)\)
=\(\left(y-z\right)\left(z-x\right)\left(x-y\right)\)
a) Ta có: \(VP=x^2+y^2+z^2-2xy+2yz-2zx\)
\(=\left(x^2-xy-xz\right)+\left(y^2-xy+yz\right)+\left(z^2-yz-zx\right)\)
\(=x\left(x-y-z\right)+y\left(y-x+z\right)+z\left(z-y-x\right)\)
\(=x\left(x-y-z\right)-y\left(x-y-z\right)-z\left(x-y-z\right)\)
\(=\left(x-y-z\right)\left(x-y-z\right)\)
\(=\left(x-y-z\right)^2=VT\)(đpcm)
b) Ta có: \(VP=x^2+y^2+z^2+2xy-2yz-2zx\)
\(=\left(x^2+xy-zx\right)+\left(y^2+xy-2yz\right)+\left(z^2-yz-zx\right)\)
\(=x\left(x+y-z\right)+y\left(x+y-z\right)+z\left(z-y-x\right)\)
\(=\left(x+y-z\right)\left(x+y\right)-z\left(x+y-z\right)\)
\(=\left(x+y-z\right)\left(x+y-z\right)\)
\(=\left(x+y-z\right)^2=VT\)(đpcm)
c) Ta có: \(VP=x^4-y^4\)
\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\)
\(=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)
\(=\left(x-y\right)\left(x^3+xy^2+x^2y+y^3\right)=VT\)(đpcm)
d) Ta có: \(VT=\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)\)
\(=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5\)
\(=x^5+y^5=VP\)(đpcm)
a, \(x^3+y^3+z^3=3xyz\Rightarrow x^3+y^3+z^3-3xyz=0\)( 1 )
Nhận xét : \(\left(x+y\right)^3=x^3+y^3+3x^2y+3xy^2\Rightarrow x^3+y^3=\left(x+y\right)^3-3x^2-3xy^2\)
Thay vào ( 1 ) ta có :
\(\left(x+y\right)^3+c^3-3x^2y-3xy^2-3xyz\)
\(=\left(z+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(z+y+z\right)\left(z^2+2xy+y^2-xz-yz+z^2\right)-3xyz\left(z+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)
\(=\left(x+y+z\right)\left(z^2+x^2+y^2-xy-yz-xz\right)\)
Vì theo đầu bài ta có: \(x+y+z=0\)nên ta có ( DPCM ) ..... học cho tốt nhé!
1) 2x2-8xy-5x+20y
=2x(x-4y)-5(x-4y)
=(2x-5)(x-4y)
2) x3-x2y-xy+y2
=x2(x-y)-y(x-y)
=(x2-y)(x-y)
3) x2-2xy-4z2+y2
=(x-y)2-(2z)2
=(x-y-2z)(x-y+2z)
4) a3+a2b-a2c-abc
=a2(a+b)-ac(a+b)
=(a2-ac)(a+b)
=a(a-c)(a+b)
5) x3+y3+3x2y+3xy2-x-y
=(x+y)(x2-xy+y2)+3xy(x+y)-(x+y)
=(x+y)(x2-xy+y2+3xy-1)
=(x+y)[(x+y)2-1)]
=(x+y)(x+y+1)(x+y-1)
6) x3+x2y-x2z-xyz
=x2(x+y)-xz(x+y)
=(x2-xz)(x+y)
=x(x-z)(x+y)
7) =[x(y+z)2-2xyz]+[y(z+x)2-2xyz]+z(x+y)2
=x(y2+z2)+y(z2+x2)+z(x+y)2
=xy(x+y)+z2(x+y)+z(x+y)2
=(x+y)(xy+z2+zx+zy)
=(x+y)(x+z)(y+z)
8) x3(z-y)+y3(x-z)+z3(y-x)
Tách x-z= -[z-y+y-x]
a) \(\left(x+y-z\right)^2=\left[\left(x+y\right)-z\right]^2\)
\(=\left(x+y\right)^2-2\left(x+y\right)z+z^2\)
\(=x^2+2xy+y^2-2zx-2yz+z^2\)
\(=x^2+y^2+z^2+2xy-2yz-2zx\)
b) \(\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)\)
\(=x^4+x^3y+x^2y^2+xy^3-x^3y-x^2y^2-xy^3-y^4\)
\(=x^4-y^4\)
c) \(\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)\)
\(=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5\)
\(=x^5+y^5\)
Bạn tham khảo tại link sau:
Câu hỏi của Lenkin san - Toán lớp 8 | Học trực tuyến
\(x^2y+xy^2+x^2z+y^2z+x^3+y^3\)
\(=x^2y+x^3+y^3+xy^2+x^2z+y^2z\)
\(=x^2\left(x+y\right)+y^2\left(x+y\right)+z\left(x^2+y^2\right)\)
\(=\left(x^2+y^2\right)\left(x+y\right)+z\left(x^2+y^2\right)\)
\(=\left(x^2+y^2\right)\left(x+y+z\right)\)