K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2019

\(3x=2y=z\Rightarrow\frac{z}{6}=\frac{x}{2}=\frac{y}{3}\)

Áp dụng tính chất của dãy tỉ số bằng nhau

\(\frac{z}{6}=\frac{x}{2}=\frac{y}{3}=\frac{x+y+z}{6+2+3}=\frac{99}{11}=9\)

\(\Rightarrow\hept{\begin{cases}z=54\\x=18\\y=27\end{cases}}\)

24 tháng 7 2019

\(\frac{2x}{1}=\frac{-3y}{-1}=\frac{4z}{-2}\)

áp dụng tính chất dãy tỉ số bằng nhau  ta có

\(\frac{2x}{1}=\frac{-3y}{-1}=\frac{4z}{-2}=\frac{2x-3y+4z}{1+-1-2}=\frac{48}{-2}=-24\)

\(\Rightarrow\hept{\begin{cases}x=-12\\y=-8\\z=-12\end{cases}}\)

30 tháng 8 2017

\(\frac{x}{2}=\frac{y}{5};\frac{y}{3}=\frac{z}{2}\) và 2x + 3y - 4z = 34 

\(\frac{x}{2}=\frac{y}{5}=\frac{1}{3}.\frac{x}{2}=\frac{1}{3}.\frac{y}{5}=\frac{x}{6}=\frac{y}{15}\)

\(\frac{y}{3}=\frac{z}{2}=\frac{1}{5}.\frac{y}{3}=\frac{1}{5}.\frac{z}{2}=\frac{y}{15}=\frac{z}{10}\)

\(\Rightarrow\frac{x}{6}=\frac{y}{15}=\frac{z}{10}\) và 2x + 3y -4z = 34 

Theo tính chất dãy tỉ số bằng nhau: 

\(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}\Rightarrow\frac{2x+3y-4z}{12+45-40}=\frac{34}{17}=2\)

\(\frac{x}{6}=2\Rightarrow x=2.6=12\)

\(\frac{y}{15}=2\Rightarrow y=2.15=30\)

\(\frac{z}{10}=2\Rightarrow z=2.10=20\)

Vậy...

21 tháng 7 2017

làm thế nào đấy

8 tháng 8 2015

a) x/-3=y/-7=2x/-6=4y/-28=2x+4y/(-6)+(-28)= 68/-34=-2

Vậy x/-3 = -2 => x=(-2)x(-3)=6

       y/-7= -2 => y=(-2)x(-7)=14

      nhớ chọn nhé

30 tháng 8 2017

ta có : \(\dfrac{x}{2}=\dfrac{y}{5};\dfrac{y}{3}=\dfrac{z}{2}\Leftrightarrow\dfrac{x}{6}=\dfrac{y}{15};\dfrac{y}{15}=\dfrac{z}{10}\Rightarrow\dfrac{x}{6}=\dfrac{y}{15}=\dfrac{z}{10}\)

áp dụng tính chất dảy tỉ số bằng nhau

ta có : \(\dfrac{2x+3y-4z}{2.6+3.15-4.10}=\dfrac{34}{12+45-40}=\dfrac{34}{17}=2\)

\(\Rightarrow\left[{}\begin{matrix}\dfrac{x}{6}=2\\\dfrac{y}{15}=2\\\dfrac{z}{10}=2\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=12\\y=30\\z=20\end{matrix}\right.\) vậy \(x=12;y=30;z=20\)

30 tháng 8 2017

Có:\(\dfrac{x}{2}=\dfrac{y}{5}\Rightarrow\dfrac{x}{6}=\dfrac{y}{15};\dfrac{y}{3}=\dfrac{z}{2}\Rightarrow\dfrac{y}{15}=\dfrac{z}{10}\)

\(\Rightarrow\dfrac{x}{6}=\dfrac{y}{15}=\dfrac{z}{10}\Rightarrow\dfrac{2x}{12}=\dfrac{3y}{45}=\dfrac{4z}{40}\)

Và 2x + 3y - 4z = 34

Áp dụng t/c của dãy tỉ số = nhau ta có:

\(\dfrac{2x}{12}=\dfrac{3y}{45}=\dfrac{4z}{40}=\dfrac{2x+3y-4z}{12+45-40}=\dfrac{34}{17}=2\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{2\cdot12}{2}=12\\y=\dfrac{2\cdot45}{3}=30\\z=\dfrac{2\cdot40}{4}=20\end{matrix}\right.\)

30 tháng 7 2017

\(\dfrac{x}{3}=\dfrac{y}{2};\dfrac{x}{4}=\dfrac{z}{5}\)\(x+y-z=10\)

Ta có:

\(\dfrac{x}{3}=\dfrac{y}{2}\Leftrightarrow\dfrac{x}{12}=\dfrac{y}{8};\dfrac{x}{4}=\dfrac{z}{5}\Leftrightarrow\dfrac{x}{12}=\dfrac{z}{15}\)

\(\Rightarrow\dfrac{y}{8}=\dfrac{x}{12}=\dfrac{z}{15}\)\(x+y-z=10\)

AD tính chất DTS bằng nhau ta có:

\(\dfrac{y}{8}=\dfrac{x}{12}=\dfrac{z}{15}=\dfrac{x+y-z}{12+8-15}=\dfrac{10}{5}=2\)

+) \(\dfrac{y}{8}=2\Rightarrow y=16\)

+) \(\dfrac{x}{12}=2\Rightarrow x=42\)

+) \(\dfrac{z}{15}=2\Rightarrow z=30\)

Vậy \(x=42;y=16;z=30\)

c,\(\dfrac{x}{2}=\dfrac{y}{5};\dfrac{y}{3}=\dfrac{z}{2}\)\(2x+3y-4z=34\)

Ta có:

\(\dfrac{x}{2}=\dfrac{y}{5}\Leftrightarrow\dfrac{x}{6}=\dfrac{y}{15};\dfrac{y}{3}=\dfrac{z}{2}\Leftrightarrow\dfrac{y}{15}=\dfrac{z}{10}\)

\(\Rightarrow\dfrac{x}{6}=\dfrac{y}{15}=\dfrac{z}{10}\)

Ta lại có:

\(\dfrac{2x}{12}=\dfrac{3y}{45}=\dfrac{4z}{40}\)\(2x+3y-4z=34\)

AD tính chất DTS bằng nhau ta có:

\(\dfrac{2x}{12}=\dfrac{3y}{45}=\dfrac{4z}{40}=\dfrac{2x+3y-4z}{12+45-40}=\dfrac{34}{17}=2\)

+) \(\dfrac{2x}{12}=2\Rightarrow x=12\)

+) \(\dfrac{3y}{45}=2\Rightarrow y=30\)

+) \(\dfrac{4z}{40}=2\Rightarrow z=20\)

Vậy \(x=12;y=30;z=20\)

\(\)

31 tháng 7 2017

kcj

24 tháng 7 2019

+) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

 \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)

=> \(\hept{\begin{cases}\frac{x^2}{9}=4\\\frac{y^2}{16}=4\end{cases}}\) => \(\hept{\begin{cases}x^2=4.9=36\\y^2=4.16=64\end{cases}}\) => \(\hept{\begin{cases}x=\pm6\\y=\pm8\end{cases}}\)

Vậy ...

9 tháng 11 2016

a) \(\frac{x}{2}=\frac{y}{5}=\frac{z}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau , ta có:

\(\frac{x}{2}=\frac{y}{5}=\frac{z}{4}=\frac{2x}{4}=\frac{3y}{15}=\frac{z}{4}=\frac{2x-3y+z}{4-15+4}=\frac{112}{7}=16\)

\(\frac{x}{2}=16=>x=32\)

\(\frac{y}{5}=16=>x=80\)

\(\frac{z}{4}=16=>z=64\)

Câu b) tương tự chỉ cần thay số vào nha bạn

2 tháng 9 2018

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)

  suy ra:   x/5 = 45   =>  x  =  225

               y/7 = 45  =>  y  =  315

               z/9 = 45  =>  z  =  405

a)\(\frac{x}{5}=\frac{y}{6}=\frac{z}{7}\)\(x-y+z=36\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{x}{5}=\frac{y}{6}=\frac{z}{7}=\frac{x-y+z}{5-6+7}=\frac{36}{6}=6\)

\(\Rightarrow\)\(x=5.6=30\)
         \(y=6.6=36\)

         \(z=7.6=30\)

b)\(\frac{x}{5}=\frac{y}{-6}=\frac{z}{7}\)\(x+y-z=32\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{x}{5}=\frac{y}{-6}=\frac{z}{7}=\frac{x+y-z}{5+\left(-6\right)-7}=\frac{32}{-8}=-4\)

\(\Rightarrow\)\(x=-4.5=-20\)

         \(y=-4.-6=24\)

         \(z=-4.7=-28\)

c)\(\frac{x}{5}=\frac{y}{3}=\frac{z}{2}\)và \(2x+3y+4z\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{x}{5}=\frac{y}{3}=\frac{z}{2}=\frac{2x+3y+4z}{2.5+3.3+4.2}\)\(=\frac{54}{27}=2\)

\(\Rightarrow\)\(x=2.5=10\)

         \(y=2.3=6\)
         \(z=2.2=4\)

d)\(\frac{x}{5}=\frac{y}{2}=\frac{z}{3}\)và \(2x-3y+5z=38\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{x}{5}=\frac{y}{2}=\frac{z}{3}=\frac{2x-3y+5z}{2.5-3.2+5.3}=\frac{38}{19}=2\)

\(\Rightarrow\)\(x=2.5=10\)

         \(y=2.2=4\)

          \(z=3.2=6\)

Hok tốt!

@Kaito Kid