\(x^2+y^2=2\)

TÌM MAX \(P=2\left(x^3+y^3\right)-3xy\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2016

\(P=2\left(x^3+y^3\right)-3xy\)

\(P=2\left(x+y\right)\left(x^2-2xy+y^2\right)-3xy\)

\(P=2\left(x+y\right)\left(2-2xy\right)-3xy\)

Mặt khác: \(x^2+y^2=2\Leftrightarrow\left(x+y\right)^2-2xy=2\Leftrightarrow xy=\frac{\left(x+y\right)^2-2}{2}\)

Thay \(xy=\frac{\left(x+y\right)^2-2}{2}\) vào P ta có:  \(P=2\left(x+y\right)\left(2-2.\frac{\left(x+y\right)^2-2}{2}\right)-3.\frac{\left(x+y\right)^2-2}{2}\)

Đặt x+y=t <=> \(\left(x+y\right)^2=t^2\le2\left(x^2+y^2\right)=2.2=4\) 

=> \(\left|t\right|\le2\) và \(P=2t\left(2-2.\frac{t^2-2}{2}\right)-3.\frac{t^2-2}{2}=-t^3-\frac{3}{2}.t^2+6t+3\) với \(\left|t\right|\le2\)

Xét \(g\left(t\right)=-t^3-\frac{3}{2}.t^2+6t+3\) trên đoạn [-2;2]

\(g'\left(t\right)=-3t^2-3t+6\)

             \(g'\left(t\right)=0\Leftrightarrow-3t^2-3t+6=\left(-3\right)\left(t^2+t-2\right)=0\)

\(\Leftrightarrow t^2+t-2=t^2-t+2t-2=t\left(t-1\right)+2\left(t-1\right)=\left(t+2\right)\left(t-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t+2=0\\t-1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}t=-2\in\left[-2;2\right]\\t=1\in\left[-2;2\right]\end{cases}}\)

             \(g\left(-2\right)=-7;g\left(2\right)=1;g\left(1\right)=\frac{13}{2}\)

=>\(P_{max}=\frac{13}{2}\) khi \(x=\frac{1+\sqrt{3}}{2}\) và \(y=\frac{1-\sqrt{3}}{2}\) hoặc \(x=\frac{1-\sqrt{3}}{2}\) và \(y=\frac{1+\sqrt{3}}{2}\)

Vậy .............

20 tháng 7 2016

\(C=\left(x^3+y^3\right)+3xy\left(x^2+y^2+2xy\left(x+y\right)\right)\)

\(C=\left(x^3+y^3+3x^2y+3xy^2-3x^2y-3xy^2\right)+3xy\left(x^2+y^2+2xy\right)\) (vì x+y=1)

\(C=\left(x+y\right)^3-3x^2y-3xy^2+3xy\left(x+y\right)^2\)

\(C=1^3-3xy\left(x+y\right)+3xy.1^2\) (vì x+y=1)

\(C=1-3xy+3xy\)(vì x+y=1)

\(C=1\)

\(D=2\left(\left(x+y\right)^3-3xy\left(x+y\right)\right)-3\left(\left(x+y\right)^2-2xy\right)\)

\(D=2\left(1^3-3xy\right)-3\left(1^2-2xy\right)\)(vì x+y=1)

\(D=2-6xy-3+6xy\)

\(D=-1\)

25 tháng 8 2018

M = ( x - y )3 - ( x - y )2 

   = 73 - 72 = 294

N = x3 + x2  - y2 + y2 + xy - 3x2y +3xy2 - 3xy - 95

  = ( x - y )3 + ( x - y )2 - 95

  = 73 + 72 - 95 = 297

Mình không chép lại đề nhé !

Bạn chép sai đề rồi , câu b ( x - y + 1 ) mới đúng nha

1 tháng 8 2019

a) Vì \(x-y=1\)

\(\Rightarrow\left(x-y\right)^3=1\)

\(\Leftrightarrow x^3-y^3-3xy\left(x-y\right)=1\)

\(\Leftrightarrow x^3-y^3-3xy=1\)

1 tháng 8 2019

b) \(B=2\left(x^3-y^3\right)-3\left(x+y\right)^2\)

\(=2\left(x-y\right)\left(x^2+xy+y^2\right)-3\left(x^2+2xy+y^2\right)\)

\(=4\left(x^2+xy+y^2\right)-3\left(x^2+2xy+y^2\right)\)

\(=4x^2+4xy+4y^2-3x^2-6xy-3y^2\)

\(=x^2-2xy+y^2\)

\(=\left(x-y\right)^2\)

\(=4\)

a: \(=2x^2-x+5\)

b: \(=-\dfrac{3}{2}x^3+x^2-\dfrac{1}{2}x\)

c: \(=-x^3+\dfrac{3}{2}-2x\)

d: \(=-2x^2+4xy-6y^2\)

e: \(=\dfrac{3}{5}\left(x-y\right)^3-\dfrac{2}{5}\left(x-y\right)^2+\dfrac{3}{5}\)

1a) (x - 2y) (x2 - 2xy + y2)

= (x - 2y) (x - y)2

= x2 - xy - 2xy + 2y2

= (x2 - xy) - (2xy - 2y2)

= x (x - y) - 2y (x - y)

= (x - y) (x - 2y)

2a) x (x - 3) - y (3 - x)

= x (x - 3) + y (x - 3)

= (x - 3) (x + y)

b) 3x2 - 5x - 3xy + 5y

= (3x2 - 3xy) - (5x - 5y)

= 3x (x - y) - 5 (x - y)

= (x - y) (3x - 5)

3) 12x (3 - 4x) + 7 (4x - 3) = 0

12x (3 - 4x) - 7 (3 - 4x) = 0

(3 - 4x) (12x - 7) = 0

=> 3 - 4x = 0 hoặc 12x - 7 = 0

* 3 - 4x = 0 => x = \(\frac{3}{4}\)

* 12x - 7 = 0 => x = \(\frac{7}{12}\)

Vậy x =\(\frac{3}{4}\)hoặc x =\(\frac{7}{12}\)