K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2017

Đặt A = x^2+y^2-xy-x-y+2

4A = 4x^2+4y^2-4xy-4x-4y+8

= [(4x^2-4xy+y^2)-(4x-2y)+1]+(3y^2-6y+3)+4

= [(2x-y)^2-2.(2x-y)+1]+3.(y^2-2y+1)+4

= (2x-y+1)^2+3.(y-1)^2+4 >= 4 => A >= 1

Dấu "=" xảy ra <=> 2x-y-1=0 và y-1=0 <=> x=y=1

Vậy GTNN của A = 1 <=> x=y=1

k mk nha

AH
Akai Haruma
Giáo viên
6 tháng 7 2021

Bạn cần viết đề bằng công thức toán để được hỗ trợ tốt hơn.

17 tháng 12 2018

ta có: x+y+xy = 35

=> x+y = 35-xy

=>(x+y)2  = (35-xy)2

=> x2 + 2xy+y2= 352 - 70xy+x2y2

=> x2 +y2 = 352 - 70xy +x2y2 -2xy

x2 +y2 = 362 - 72xy + x2y2 - 71

\(x^2+y^2=\left(36-xy\right)^2-71\ge-71.\)

=> \(Min_{x^2+y^2=-71}\)

18 tháng 12 2018

Đây nhá : Câu hỏi của Bonking - Toán lớp 8 | Học trực tuyến

Chưa biết ai đúng nhưng lời giải của Luân Đào nghe có vẻ hợp lí hơn :))

21 tháng 8 2018

Hỏi đáp Toán

21 tháng 8 2018

nhanh thế

21 tháng 8 2018

Đặt \(B=x^2+y^2-xy-x-y+2\)

\(\Rightarrow4B=4x^2+4y^2-4xy-4x-4y+8\)

\(=\left[\left(4x^2+4xy+y^2\right)-2\left(2x+y\right)+1\right]+3\left(y^2-2y+1\right)+4\)

\(=\left[\left(2x+y\right)^2-2\left(2x+y\right)+1^2\right]+3\left(y-1\right)^2+4\)

\(=\left(2x+y-1\right)^2+3\left(y-1\right)^2+4\ge4\)

Dấu bằng khi x = 0, y = 1

12 tháng 7 2018

a, (x^2 -2x+1)+(y^2 +6y+9) =0

(x-1)^2 +(y+3)^2 =0

Do đó: x-1=0 và y+3=0

Vậy x=1 và y=-3

b, x^2 +y^2 +1=xy+x+y

2x^2 +2y^2 +2=2xy+2x+2y

2x^2 +2y^2 -2xy-2x-2y +2=0

(x^2 -2x+1)+(y^2 -2y+1)+ (x^2 +y^2 -2xy)=0

(x-1)^2 +(y-1)^2 +(x-y)^2 =0

Suy ra: x-1=0, y-1=0 và x-y=0

Vậy x=1,y=1

c,5x^2 - 4x-2xy+y^2 +1=0

(4x^2 -4x+1)+(x^2 -2xy+y^2 )=0

(2x-1)^2 +(x-y)^2 =0

Do đó: 2x-1 =0 và x=y suy ra: x=0,5 và x=y

Vậy x=y=0,5

6 tháng 5 2017

áp dụng BĐT\(\frac{1}{x}+\frac{1}{y}>=\frac{4}{x+y}\)(x,y>0)

=>A=\(\frac{1}{xy}+\frac{2}{x^2+y^2}=\frac{2}{2xy}+\frac{2}{x^2+y^2}=2\left(\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)>=\frac{2.4}{2xy+X^2+Y^2}=\frac{8}{\left(x+y\right)^2}=8\)

dấu bằng xảy ra khi x=y=1/2

2/xy<=1/x^2+1/y^2=1/2

=>xy>=4

Dấu = xảy ra khi x=y=2

(x+y)^2>=4xy>=16

=>x+y>=4

Dấu = xảy ra khi x=y=2

=>x+y+xy+2023>=2023+4+4=2031 

Dấu = xảy ra khi x=y=2

NV
9 tháng 3 2023

\(P=\dfrac{x^3+y^3}{x^3y^3}=\dfrac{\left(x+y\right)\left(x^2+y^2-xy\right)}{x^3y^3}=\dfrac{x^2y^2\left(x+y\right)}{x^3y^3}=\dfrac{x+y}{xy}=\dfrac{\left(x+y\right)^2}{xy\left(x+y\right)}\)

\(=\dfrac{\left(x+y\right)^2}{x^2+y^2-xy}=\dfrac{4\left(x^2+y^2-xy\right)-3\left(x^2+y^2-2xy\right)}{x^2+y^2-xy}\)

\(=4-\dfrac{3\left(x-y\right)^2}{x^2+y^2-xy}\le4\)

\(P_{max}=4\) khi \(x=y=\dfrac{1}{2}\)