Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^2-11=0\)
<=> \(x^2-\sqrt{11}=0\)
<=> \(\left(x-\sqrt{11}\right)\left(x+\sqrt{11}\right)=0\)
<=> \(\left[{}\begin{matrix}x-\sqrt{11}=0\\x+\sqrt{11}=0\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=\sqrt{11}\\x=-\sqrt{11}\end{matrix}\right.\) => x = \(\pm\sqrt{11}\) Vậy S ={ \(\pm\sqrt{11}\)}
b) \(x^2-2\sqrt{13}x+13=0\)
\(\Leftrightarrow\left(x-\sqrt{13}\right)^2=0\)
=> x = \(\sqrt{13}\)
Vậy S = {\(\sqrt{13}\) }
\(c\)) \(\sqrt{x^2-10x+25}=7-2x\)
\(\Leftrightarrow\sqrt{\left(x-5\right)^2}=7-2x\)
\(\Leftrightarrow\left|x-5\right|=7-2x\)
=> Có 2 TH xảy ra
* Khi x - 5 \(\ge0\Leftrightarrow x\ge5\) Ta có PT :
x - 5 = 7 - 2x
<=> 3x = 12
=> x= 4 (KTM)
* Khi x - 5 < 0 => x < 5
Ta có pT
-x + 5 = 7-2x
<=> x = 2 (TM)
Vậy S = { 2 }
\(a\text{)} x^2-11=0\\ x^2=11\\ x=\pm\sqrt{11}\)
\(b\text{)}\:x^2-2\sqrt{13x}+13=0\\ \left(x-\sqrt{13}\right)^2=0\\ x-\sqrt{13}=0\\ x=\sqrt{13}\)
\(c\text{)}\:\sqrt{x^2-10x+25}=7-2x\\ \left|x-5\right|=7-2x\\ \Rightarrow\left[{}\begin{matrix}x-5=7-2x\left(với\:x\ge5\right)\\5-x=7-2x\left(với\:x< 5\right)\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=4\left(loại\right)\\x=2\left(nhận\right)\end{matrix}\right.\)
đặt x+5=a\(\left(a\ge0\right)\) khi đó phương trình trở thành:
\(a^2-4+\sqrt{a}+\sqrt{16-a}=0\)
lại có \(\sqrt{a}+\sqrt{16-a}\ge\sqrt{a+16-a}=4\)
nên ta có:
\(a^2-4+\sqrt{a}+\sqrt{16-a}\ge a^2\)
Suy ra \(0\ge a^2\)
\(\Rightarrow a=0\)hay x+5=0
\(\Leftrightarrow x=-5\)
a)\(x^2+5x-7=0\)
Áp dụng hệ thức Vi - ét:
\(S=x_1+x_2=\frac{-b}{a}=-5\)
b)\(x^2-5x+7=0\)
Áp dụng hệ thức Vi - ét:
\(S=x_1+x_2=\frac{-b}{a}=\frac{5}{1}=5\)
c)\(2x^2-10x+41=0\)
Áp dụng hệ thức Vi - ét:
\(S=x_1+x_2=\frac{-b}{a}=\frac{10}{2}=5\)
d)\(2x^2-10x-7=0\)
Áp dụng hệ thức Vi - ét:
\(S=x_1+x_2=-\frac{b}{a}=\frac{10}{2}=5\)
Vậy câu B,C,D là phương trình co tổng hai nghiệm là 5
a.
\(\sqrt{4x^2+4x+1}-\sqrt{25x^2+10x+1}=0\)
\(\Leftrightarrow\sqrt{\left(2x+1\right)^2}-\sqrt{\left(5x+1\right)^2}=0\)
\(\Leftrightarrow2x+1-\left(5x+1\right)=0\)
\(\Leftrightarrow-3x=0\Leftrightarrow x=0\)
b.
\(\sqrt{x^4-16x^2+64}=\sqrt{25x^2+10x+1}\)
\(\Leftrightarrow\sqrt{\left(x^2-8\right)^2}=\sqrt{\left(5x+1\right)^2}\)
\(\Leftrightarrow x^2-8=5x+1\)
\(\Leftrightarrow x^2-5x+\dfrac{25}{4}=\dfrac{61}{4}\)
\(\Leftrightarrow\left(x-\dfrac{5}{2}\right)^2=\dfrac{61}{4}\)
............................
tương tự ..
c: \(\Leftrightarrow\sqrt{x-5}\left(\sqrt{x+5}-1\right)=0\)
=>x-5=0 hoặc x+5=1
=>x=-4 hoặc x=5
d: \(\Leftrightarrow\sqrt{2x+3}\left(\sqrt{2x-3}-2\right)=0\)
=>2x+3=0 hoặc 2x-3=4
=>x=7/2 hoặc x=-3/2
e: \(\Leftrightarrow\sqrt{x-2}\left(1-3\sqrt{x+2}\right)=0\)
=>x-2=0 hoặc 3 căn x+2=1
=>x=2 hoặc x+2=1/9
=>x=-17/9 hoặc x=2
TRừ vế theo vế của hai phương trình trên. Ta có:
=> \(-4x-2y+10x=20\)
<=> \(6x-2y=20\)
<=> \(3x-y=10\)
<=> \(y=3x-10\)
Thế vào phương trình đầu ta có:
\(x^2+\left(3x-10\right)^2-10x=0\)Em tự làm tiếp nhé!
Chị ơi bài này em làm rồi mà em đăng lộn , tí nữa em đăng bài khác chị giải hộ em với nhá . Cảm ơn chị nhiều ạ <3
a/ Nhận thấy \(x=0\) không phải nghiệm, chia cả 2 vế của pt cho \(x^2\):
\(x^2+5x-10+\frac{10}{x}+\frac{4}{x^2}=0\)
\(\Leftrightarrow x^2+\frac{4}{x^2}+5\left(x+\frac{2}{x}\right)-10=0\)
Đặt \(x+\frac{2}{x}=a\Rightarrow x^2+4+\frac{4}{x^2}=a^2\Rightarrow x^2+\frac{4}{x^2}=a^2-4\)
Phương trình trở thành:
\(a^2-4+5a-10=0\)
\(\Leftrightarrow a^2+5a-14=0\) \(\Rightarrow\left[{}\begin{matrix}a=2\\a=-7\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+\frac{2}{x}=2\\x+\frac{2}{x}=-7\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-2x+2=0\left(vn\right)\\x^2+7x+2=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{-7+\sqrt{41}}{2}\\x=\frac{-7-\sqrt{41}}{2}\end{matrix}\right.\)
b/ \(x^4-8x^2+x+12=0\)
\(\Leftrightarrow x^4-8x^2+16+x-4=0\)
\(\Leftrightarrow\left(x^2-4\right)^2+x-4=0\)
Đặt \(x^2-4=a\Rightarrow-4=a-x^2\)
Phương trình trở thành:
\(a^2+x+a-x^2=0\)
\(\Leftrightarrow\left(a-x\right)\left(a+x\right)+x+a=0\)
\(\Leftrightarrow\left(a-x+1\right)\left(x+a\right)=0\)
\(\Leftrightarrow\left(x^2-4-x+1\right)\left(x+x^2-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-x-3=0\\x^2+x-4=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{1\pm\sqrt{13}}{2}\\x=\frac{-1\pm\sqrt{17}}{2}\end{matrix}\right.\)
a: =>(x^2+4x-5)(x^2+4x-21)=297
=>(x^2+4x)^2-26(x^2+4x)+105-297=0
=>x^2+4x=32 hoặc x^2+4x=-6(loại)
=>x^2+4x-32=0
=>(x+8)(x-4)=0
=>x=4 hoặc x=-8
b: =>(x^2-x-3)(x^2+x-4)=0
hay \(x\in\left\{\dfrac{1+\sqrt{13}}{2};\dfrac{1-\sqrt{13}}{2};\dfrac{-1+\sqrt{17}}{2};\dfrac{-1-\sqrt{17}}{2}\right\}\)
c: =>(x-1)(x+2)(x^2-6x-2)=0
hay \(x\in\left\{1;-2;3+\sqrt{11};3-\sqrt{11}\right\}\)
\(A=\frac{1}{\sqrt{1}-\sqrt{2}}-\frac{1}{\sqrt{2}-\sqrt{3}}+\frac{1}{\sqrt{3}-\sqrt{4}}-....-\frac{1}{\sqrt{24}-\sqrt{25}}\)
\(=\frac{\sqrt{1}+\sqrt{2}}{(\sqrt{1}-\sqrt{2})(\sqrt{1}+\sqrt{2})}-\frac{\sqrt{2}+\sqrt{3}}{(\sqrt{2}-\sqrt{3})(\sqrt{2}+\sqrt{3})}+\frac{\sqrt{3}+\sqrt{4}}{(\sqrt{3}-\sqrt{4})(\sqrt{3}+\sqrt{4})}-...-\frac{\sqrt{24}+\sqrt{25}}{(\sqrt{24}-\sqrt{25})(\sqrt{24}+\sqrt{25})}\)
\(=\frac{\sqrt{1}+\sqrt{2}}{-1}-\frac{\sqrt{2}+\sqrt{3}}{-1}+\frac{\sqrt{3}+\sqrt{4}}{-1}-...-\frac{\sqrt{24}+\sqrt{25}}{-1}\)
\(=\frac{(1+\sqrt{2})-(\sqrt{2}+\sqrt{3})+(\sqrt{3}+\sqrt{4})-...-(\sqrt{24}+\sqrt{25})}{-1}\)
\(=\frac{1-\sqrt{25}}{-1}=4\)
\(B=\frac{5}{4+\sqrt{11}}+\frac{11-3\sqrt{11}}{\sqrt{11}-3}-\frac{4}{\sqrt{5}-1}+\sqrt{(\sqrt{5}-2)^2}\)
\(=\frac{5(4-\sqrt{11})}{(4+\sqrt{11})(4-\sqrt{11})}+\frac{\sqrt{11}(\sqrt{11}-3)}{\sqrt{11}-3}-\frac{4(\sqrt{5}+1)}{(\sqrt{5}-1)(\sqrt{5}+1)}+\sqrt{5}-2\)
\(=\frac{5(4-\sqrt{11})}{5}+\sqrt{11}-\frac{4(\sqrt{5}+1)}{4}+\sqrt{5}-2\)
\(=4-\sqrt{11}+\sqrt{11}-(\sqrt{5}+1)+\sqrt{5}-2\)
\(=1\)