Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có : \(\frac{-2}{x}=\frac{y}{3}\Leftrightarrow xy=-6\)
Vì x < 0 < y nên
x | -6 | -1 | -2 | -3 |
y | 1 | 6 | 3 | 2 |
b) Ta có : \(\frac{x-3}{y-2}=\frac{3}{2}\)
\(\Leftrightarrow2\left(x-3\right)=3\left(y-2\right)\)
\(\Leftrightarrow2x-6=3y-6\)
\(\Leftrightarrow2x=3y\)
Mà x - y = 4 => x = 4 + y,do đó \(2\left(4+y\right)=3y\)
=> 8 + 2y = 3y
=> 3y - 2y = 8
=> y = 8
Thay y = 8 vào x - y = 4 ta có :
x - 8 = 4 => x = 4 + 8 = 12
Vậy x = 12,y = 8
Bài 2: Vì x \(\in\) N nên ta có bảng giá trị sau :
x-2 | 1 | 12 | 4 | 3 | 2 | 6 |
x | 3 | 14 | 6 | 5 | 4 | 8 |
2y+1 | 12 | 1 | 3 | 4 | 6 | 2 |
y | loại | 0 | 1 | loại | loại | loại |
Vậy (x ; y) \(\in\) {(14 ; 0) ; (6 ; 1)}
Bài giải:
1/ 7^(2x-1) -7^6. 3=7^6.4
7^(2x-1) =7^6.4 +7^6. 3
7^(2x-1) =7^6.(4+3)
7^(2x-1) =7^6.7
7^(2x-1) =7^7
2x-1=7
2x=7+1
2x=8
x=4
2/ (x-2).(2y+1)=12 vì x,y E N => x-2 và 2y+1 cũng E N ; 2y +1 là 1 số lẻ
* 12 =12.1=4.3 ( để có 1 số lẻ vì 2y +1 là 1 số lẻ )
th1: x-2=12 và 2y+1=1
x-2=12 =>x=14
2y+1=1 =>2y=0 =>y=0
th2 x-2=4 và 2y+1 =3
x-2 =4=>x=6
2y+1=3 =>2y=2 =>y=1
Ta có: x-3/y-2=3/2
<=> 2x - 3y = 0 (1)
Thay x = y + 4 vào pt (1) ta dc:
2(y + 4) - 3y = 0 <=> 8 - y = 0 <=> y = 8
=> x = 12
Vậy ...
\(\frac{x-3}{y-2}=\frac{3}{2}\) (điều kiện xác định: \(y\ne2\))
\(\Leftrightarrow2\left(x-3\right)=3\left(y-2\right)\)
\(\Leftrightarrow2x-6=3y-6\)
\(\Leftrightarrow2x-3y=0\) (1)
lại có x - y = 4 => 2x - 2y = 8 (2)
lấy (1) - (2) vế theo vế, ta được:
2x - 3y - 2x + 2y = -8
-y = -8
y = 8
vậy x = 4 + y = 4 + 8 = 12
vậy x = 12 ; y = 8
Ta thấy:
\(\frac{-2}{x}=\frac{y}{3}\Leftrightarrow x\cdot y=-6\)(1)
Mà x<0<y nên x là số âm, y là số dương(2)
Từ (1) và (2), suy ra:
\(\left(x,y\right)\in\left\{\left(-2,3\right);\left(-1;6\right);\left(-6,1\right);\left(-3,2\right)\right\}\)
Vậy..
\(-\frac{2}{x}=\frac{y}{3}\Rightarrow xy=-6\)
xét bảng :
x | -1 | 1 | -2 | 2 | -3 | 3 | -6 | 6 |
y | 6 | -6 | 3 | -3 | 2 | -2 | 1 | -1 |
x < 0 < y
=> các cặp số (x;y) thỏa mãn là : (-1;6); (-2; 3); (-3; 2); (-6; 1)
a)
x-3 | 1 | -1 | 7 | -7 |
2y +1 | 7 | -7 | 1 | -1 |
x | 4 | 2 | 10 | -4 |
y | 3 | -4 | 0 | -1 |
b)
2x +1 | 1 | -1 | 5 | -5 | 11 | -11 | 55 | -55 |
3y-2 | -55 | 55 | -11 | 11 | -5 | 5 | -1 | 1 |
x | 0 | -1 | 2 | -3 | 5 | -6 | 27 | -28 |
y | / | 19 | -3 | / | -1 | / | / | 1 |
Có 4 đáp số :(x =-1; y =19) ; (x =2 ; y =-3)
(x =5 ; y =-1) ; (x =-28 ; y =1)
a,(x-3)(2y+1)=7
Ta co: 7=1.7=7.1=(-1).(-7)=(-7).(-1)
\(\Rightarrow\)(x-3)(2y+1)=1.7 hay (x-3)(2y+1)=7.1 hay (x-3)(2y+1)=(-1).(-7) hay (x-3)(2y+1)=(-7).(-1)
TH1: \(\text{(x-3)(2y+1)=}1.7\Rightarrow\orbr{\begin{cases}\left(x-3\right)=1\\\left(2y+1\right)=7\end{cases}\Rightarrow\orbr{\begin{cases}x=4\\y=3\end{cases}}\left(TM\right)}\)
TH2: \(\text{(x-3)(2y+1)=7.1}\Rightarrow\orbr{\begin{cases}\text{(x-3)=7}\\\text{ }\text{(2y+1)=1}\end{cases}\Rightarrow\orbr{\begin{cases}x=10\\y=0\end{cases}}\left(TM\right)}\)
TH3:\(\text{(x-3)(2y+1)=(-1).(-7)}\Rightarrow\orbr{\begin{cases}\text{(x-3)=-1}\\\text{(2y+1)=-7}\end{cases}\Rightarrow\orbr{\begin{cases}x=4\\y=-8\end{cases}\left(TM\right)}}\)
TH4: \(\text{(x-3)(2y+1)=(-7).(-1)}\Rightarrow\orbr{\begin{cases}\text{(x-3)=-7}\\\text{(2y+1)=-1}\end{cases}\Rightarrow\orbr{\begin{cases}x=-4\\y=-1\end{cases}\left(TM\right)}}\)
Vay (x,y)={(4,3);(10,0);(4,-8);(-4;-1)}
b, (2x+1)(3y-2)=-55
Ta co: -55=-1.55=1.(-55)=55.(-1)=-55.1=-11.5=11.(-5)=5.(-11)=-5.11
\(\Rightarrow\)(2x+1)(3y-2)=-1.55 hay (2x+1)(3y-2)=1.(-55) hay (2x+1)(3y-2)=55.(-1) hay (2x+1)(3y-2)=-55.1 hay (2x+1)(3y-2)=-11.5
hay (2x+1)(3y-2)=11.(-5) hay (2x+1)(3y-2)=5.(-11) hay (2x+1)(3y-2)=-5.11
TH1:\(\text{(2x+1)(3y-2)=-1.55}\Rightarrow\orbr{\begin{cases}\text{(2x+1)=-1}\\\text{(3y-2)=55}\end{cases}\Rightarrow\orbr{\begin{cases}x=-1\\y=19\end{cases}\left(TM\right)}}\)
TH2:\(\text{(2x+1)(3y-2)=1.(-55)}\Rightarrow\orbr{\begin{cases}\text{(2x+1)=1}\\\text{(3y-2)=-55}\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\y=\frac{-53}{3}\end{cases}\Rightarrow}\left(loai\right)}\)
TH3:\(\text{(2x+1)(3y-2)=55.(-1)}\Rightarrow\orbr{\begin{cases}\text{(2x+1)=55}\\\text{(3y-2)=-1}\end{cases}\Rightarrow\orbr{\begin{cases}x=27\\y=\frac{1}{3}\end{cases}\left(loai\right)}}\)
TH4: \(\text{(2x+1)(3y-2)=-55.1}\Rightarrow\orbr{\begin{cases}\text{(2x+1)=-55}\\\text{(3y-2)=1}\end{cases}\Rightarrow\orbr{\begin{cases}x=-28\\y=1\end{cases}\left(TM\right)}}\)
TH5: \(\text{(2x+1)(3y-2)=-11.5}\Rightarrow\orbr{\begin{cases}\text{(2x+1)=-11}\\\text{(3y-2)=5}\end{cases}\Rightarrow\orbr{\begin{cases}x=-6\\y=\frac{7}{3}\end{cases}\left(loai\right)}}\)
TH6: \(\text{(2x+1)(3y-2)=11.(-5)}\Rightarrow\orbr{\begin{cases}\text{(2x+1)=11}\\\text{(3y-2)=-5}\end{cases}\Rightarrow\orbr{\begin{cases}x=5\\y=-1\end{cases}\left(TM\right)}}\)
TH7:\(\text{(2x+1)(3y-2)=5.(-11)}\Rightarrow\orbr{\begin{cases}\text{(2x+1)=5}\\\text{(3y-2)=-11}\end{cases}\Rightarrow\orbr{\begin{cases}x=4\\y=-3\end{cases}\left(TM\right)}}\)
TH8:\(\text{(2x+1)(3y-2)=-5.11}\Rightarrow\orbr{\begin{cases}\text{(2x+1)=-5}\\\text{(3y-2)=11}\end{cases}\Rightarrow\orbr{\begin{cases}x=-3\\y=\frac{13}{3}\end{cases}\left(loai\right)}}\)
Lời giải:
** Bổ sung điều kiện $x,y$ là số nguyên/
$x^2+xy-x-4=y$
$x^2+xy-(x+y)=4$
$x(x+y)-(x+y)=4$
$(x-1)(x+y)=4$
Vì $x,y$ nguyên nên $x-1, x+y$ nguyên. Do đó ta xét các TH sau:
TH1: $x-1=1, x+y=4\Rightarrow x=2; y=2$
TH2: $x-1=-1, x+y=-4\Rightarrow x=0; y=-4$
TH3: $x-1=4, x+y=1\Rightarrow x=5; y=-4$
TH5: $x-1=-4, x+y=-1\Rightarrow x=-3; y=2$
TH6: $x-1=2; x+y=2\Rightarrow x=3; y=-1$
TH7: $x-1=-2, x+y=-2\Rightarrow x=-1; y=-1$