Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B\left(x\right)=x^4-x^2-8=0\left(1\right)\)
\(\text{Đặt: }\) \(x^2=t\left(t\ge0\right)\)
\(\left(1\right)\Leftrightarrow t^2-t-8=0\)
\(\Delta=\left(-1\right)^2-4\cdot8=-31< 0\)
\(\Rightarrow B\left(x\right)\text{vô nghiệm.}\)
không thể chứng minh, nếu x-1 thì có thể làm ra 3 trường hợp
Giả sử đa thức R(x) tồn tại một nghiệm n nào đó, n là số thực
Khi đó: R(x) = x^8 -x^5 + x^2 -x +1 = 0
(x^8 + x^2 ) -( x^5 + x) = -1 (**)
Vì (x^8 + x^2 ) > ( x^5 + x) nên (x^8 + x^2 ) -( x^5 + x) luôn lớn hơn 0 trái với (**)
Vậy đa thức R(x) vô nghiệm
Ta có: x^8-x^5+x^2-x+1 = (x+x^2+x^5)-x^5+x^2-x+1 = (x^5-x^5)+(x^2+x^2)+(x-x)+1 = 0+2x^2+0+1 = 2x^2+1
Vì 2x^2 \(\ge\) 0 nên 2x^2+1 \(\ge\) 1
Vậy R(x) không có nghiệm
Chúc bạn hoc tốt! k mik nha
Bài 1 :
a) x^2 + 5x = 0
x(x+ 5 ) = 0
=> x = 0 hoặc x + 5 = 0
=> x = 0 và x = -5
b tương tự
c ) 3x^2 - 5x - 8 = 0
3x^2 - 8x + 3x - 8 = 0
=> x ( 3x - 8 ) + 3x - 8 = 0
=> ( x+ 1 )( 3x - 8 ) = 0
=> x+ 1 = 0 hoặc 3x - 8 = 0
=> x = -1 hoặc x = 8/3
(+) d tương tự
Bài 2 :
x^2 + 2x + 7 = x^2 + x + x + 1 + 6 = x(x+1)+ x +1 + 6 = ( x+ 1 )(x+1) +6 = ( x+ 1 )^2 + 6
Vì ( x+ 1 )^2 >=0 => ( x+ 1 )^2 + 6 > 0
=> vô nghiệm
Ta xét 3 khoảng giá trị:
+) Nếu \(x\le0\)thì \(x^8\ge x^5;x^2\ge x\)(dễ thấy)
\(\Rightarrow x^8-x^5\ge0;x^2-x\ge0\)
\(\Rightarrow f\left(x\right)\ge1>0\)
Ở khoảng này f(x) vô nghiệm.
+) Nếu \(0< x< 1\)
Ta có: \(f\left(x\right)=1-\left[x^5-x^8+x-x^2\right]\)
\(=1-\left[x^5\left(1-x^3\right)+x\left(1-x\right)\right]\)
Vì 0 < x < 1 nên \(x^5,1-x^3>0\)
Áp dụng bđt Cauchy, ta được:
\(\sqrt{x^5\left(1-x^3\right)}\le\frac{x^5+1-x^3}{2}\)
\(\Rightarrow x^5\left(1-x^3\right)\le\left(\frac{x^5+1-x^3}{2}\right)^2\)
Tương tự ta có: \(x\left(1-x\right)\le\left(\frac{x+1-x}{2}\right)^2=\frac{1}{4}\)
Lúc đó \(x^5\left(1-x^3\right)+x\left(1-x\right)\le\left(\frac{1-\left(x^3-x^5\right)}{2}\right)^2+\frac{1}{4}\)
\(< \frac{1}{4}+\frac{1}{4}=\frac{1}{2}< 1\)(do x3 > x5 vì 0 < x < 1)
\(=1-\left[x^5\left(1-x^3\right)+x\left(1-x\right)\right]>0\)
Ở khoảng này đa thức cũng vô nghiệm.
+) Nếu \(x\ge0\)thì \(x^8\ge x^5;x^2\ge x\)
\(\Rightarrow x^8-x^5\ge0;x^2-x\ge0\)
\(\Rightarrow f\left(x\right)\ge1>0\)
Ở khoảng này đa thức cũng vô nghiệm.
Vậy đa thức f(x) vô nghiệm
\(x^2+x+8\)
\(=\left(x^2+x+\frac{1}{4}\right)-\frac{1}{4}+8\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{31}{8}>0\) với mọi \(x\)
=> Vô nghiệm