Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) (x+6)(3x-1)+x+6=0
⇔(x+6)(3x-1)+(x+6)=0
⇔(x+6)(3x-1+1)=0
⇔3x(x+6)=0
2) (x+4)(5x+9)-x-4=0
⇔(x+4)(5x+9)-(x+4)=0
⇔(x+4)(5x+9-1)=0
⇔(x+4)(5x+8)=0
3)(1-x)(5x+3)÷(3x-7)(x-1)
=\(\frac{\left(1-x\right)\left(5x+3\right)}{\left(3x-7\right)\left(x-1\right)}=\frac{\left(1-x\right)\left(5x+3\right)}{\left(7-3x\right)\left(1-x\right)}=\frac{\left(5x+3\right)}{\left(7-3x\right)}\)
1) \(x^2+x-2=0\)
\(\Leftrightarrow x^2+2x-x-2=0\)
\(\Leftrightarrow x\left(x+2\right)-\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=1\end{cases}}\)
2) \(x^2+2x-3=0\)
\(\Leftrightarrow x^2+3x-x-3=0\)
\(\Leftrightarrow x\left(x+3\right)-\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-3\\x=1\end{cases}}\)
3) \(x^2-x-6=0\)
\(\Leftrightarrow x^2-3x+2x-6=0\)
\(\Leftrightarrow x\left(x-3\right)+2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)
4) \(x^2+x-6=0\)
\(\Leftrightarrow x^2+3x-2x-6=0\)
\(\Leftrightarrow x\left(x+3\right)-2\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-3\\x=2\end{cases}}\)
5) \(2x^2-x-6=0\)
\(\Leftrightarrow2x^2-4x+3x-6=0\)
\(\Leftrightarrow2x\left(x-2\right)+3\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-\frac{3}{2}\end{cases}}\)
<=>(x+2)(x+8)(x+4)(x+6)+15=0
<=>(x2+10x+16)(x2+10x+24)+15=0
Đặt x2+10x+20=a
=>(a-4)(a+4)+15=0
<=>a2=1
<=>a=1 hoặc a=-1
*)a=1 <=>x2+10x+19=0
<=>x=\(-5_-^+\sqrt{6}\)
*)a=-1<=>x2+10x+21=0
<=>x=-3 hoặc x=-7
Ta có: (x+2)(x+4)(x+6)(x+8)+15=0
<=> \(\left[\left(x+2\right)\left(x+8\right)\right]\left[\left(x+4\right)\left(x+6\right)\right]+15=0\)
<=> (x2+10x+16)+(x2+10x+24)+15=0
Đặt t= x2+10x+20,ta có:
(t-4)(t+4)+15=0
<=> t2-16+15=0
<=> t2-1=0
<=> (t-1)(t+1)=0
<=>\(\left[{}\begin{matrix}t-1=0\\t+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}t=1\\t=-1\end{matrix}\right.\)
Với t=1 ta có
x2+10x+20=1
<=> x2+2*5x+25=6
<=> (x+5)2=6
<=> \(\left[{}\begin{matrix}x+5=\sqrt{6}\\x+5=-\sqrt{6}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{6}-5\\x=-\sqrt{6}-5\end{matrix}\right.\)
Với t=-1 ta có
x2+10x+20=-1
<=> x2+3x+7x+21=0
<=> x(x+3)+7(x+3)=0
<=> (x+3)(x+7)=0
<=>\(\left[{}\begin{matrix}x+3=0\\x+7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-7\end{matrix}\right.\)
\(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16=0\)
\(\Leftrightarrow\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16=0\)
Đặt \(t=x^2+10x+16\) ta có:
\(t\left(t+8\right)+16=0\)\(\Leftrightarrow t^2+8t+16=0\)
\(\Leftrightarrow\left(t+4\right)^2=0\Leftrightarrow t=-4\Leftrightarrow x^2+10x+16=-4\)
\(\Leftrightarrow x^2+10x+20=0\)
\(\Delta=10^2-4\cdot1\cdot20=20\)\(\Rightarrow x_{1,2}=\frac{-10\pm\sqrt{20}}{2}\)
(x+2)(x+4)(x+6)(x+8)+16=0
(x+2)(x+8)(x+4)(x+6)+16=0
(x2+8x+2x+16)(x2+6x+4x+24)+16=0
(x2+10x+20-4)(x2+10x+20+4)+16=0
(x2+10x+20)2-16+16=0
(x2+10x+20)2=0
x2+10x+20=0
x2+2x5+25-5=0
(x+5)2-(căn bậc 2 của 5)2=0
(x+5-căn bậc 2 của 5)(x+5+căn bậc 2 của 5)=0
Suy ra x+5-căn bậc 2 của 5=0
Tự giải
X+5+căn bâc 2 của 5=0
Tự giải
Vậy ......
=> (x + 2)(x + 8)(x + 4)(x + 6) + 16 =0
=> (x2 + 10x + 16)(x2 + 10x + 24) + 16 = 0
nhân vào , rút gon ta đc :
x4 + 20x3 + 140x2 + 400x + 400 = 0
=> x4 + 100x2 + 400 + 20x2 + 400x + 40x2 =0
=> (x2 + 10x + 20)2 = 0
=> x2 + 10x + 20 = 0
Tính denta ra ta đc : x1 = \(\sqrt{5}-5\) ; x2 = \(-\sqrt{5}-5\)
ẩn phụ đi :v
( x + 2 )( x + 4 )( x + 6 )( x + 8 ) + 16 = 0
<=> [ ( x + 2 )( x + 8 ) ][ ( x + 4 )( x + 6 ) ] + 16 = 0
<=> ( x2 + 10x + 16 )( x2 + 10x + 24 ) + 16 = 0
Đặt t = x2 + 10x + 20
<=> ( t - 4 )( t + 4 ) + 16 = 0
<=> t2 - 16 + 16 = 0
<=> t2 = 0
<=> ( x2 + 10x + 20 )2 = 0
<=> x2 + 10x + 20 = 0
Δ = b2 - 4ac = 102 - 4.1.20 = 100 - 80 = 20
Δ > 0 nên phương trình có hai nghiệm phân biệt
\(x_1=\frac{-b+\sqrt{\text{Δ}}}{2a}=\frac{-10+\sqrt{20}}{2}=-5+\sqrt{5}\)
\(x_2=\frac{-b-\sqrt{\text{Δ}}}{2a}=\frac{-10-\sqrt{20}}{2}=-5-\sqrt{5}\)
Vậy \(x=-5\pm\sqrt{5}\)
Bài 1:
1. \(x-8=3-2\left(x+4\right)\)
\(x-8=3-2x-8\)
\(3x=3\Rightarrow x=1\)
2. \(2\left(x+3\right)-3\left(x-1\right)=2\)
\(2x+6-3x+3=2\)
\(-x+9=2\Rightarrow x=7\)
3. \(4\left(x-5\right)-\left(3x-1\right)=x-19\)
\(4x-20-3x+1=x-19\)
\(0x=0\Rightarrow x=0\)
4. \(7-\left(x-2\right)=5\left(2x-3\right)\)
\(7-x+2=10x-15\)
\(-11x=-24\Rightarrow x=\frac{24}{11}\)
5. \(32-4\left(0,5y-5\right)=3y+2\)
\(32-2y+20=3y+2\)
\(-5y=-50\Rightarrow y=10\)
6. \(3\left(x-1\right)-x=2x-3\)
\(3x-3-x=2x-3\)
\(0x=0\Rightarrow x=0\)
Bài 2:
1. \(\frac{2-x}{3}=\frac{3-2x}{5}\)
\(\frac{\left(2-x\right)5}{15}-\frac{\left(3-2x\right)3}{15}=0\)
\(\frac{10-5x-9+6x}{15}=0\)
\(x+1=0\Rightarrow x=-1\)
2. \(\frac{3-4x}{4}=\frac{x+2}{5}\)
\(\frac{5\left(3-4x\right)}{20}-\frac{4\left(x+2\right)}{20}=0\)
\(\frac{15-20x-4x-8}{20}=0\)
\(7-24x=0\)
\(24x=7\Rightarrow x=\frac{7}{24}\)
(x+2)(x+4)(x+6)(x+8)+6=0
\(\Leftrightarrow\left(x^2+10x+16\right)\left(x^2+10x+24\right)+6=0.\)
Đặt \(x^2+10x+16=a=>x^2+10x+24=a+8.\)
\(\Leftrightarrow a\left(a+8\right)+6=0\Leftrightarrow a^2+8a+6=0\)
giải PT=>a=>x
P.s:đề là +16 sẽ hợp lý hơn
\(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+6=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+8\right)\left(x+4\right)\left(x+6\right)+6=0\)
\(\Leftrightarrow\left(x^2+10x+16\right)\left(x^2+10+24\right)+6=0\)
Đặt : \(x^2+10x+20=t\) , ta có:
\(\left(t-4\right)\left(t+4\right)+6=0\)
\(\Leftrightarrow t^2-16+6=0\)
\(\Leftrightarrow t^2-10=0\)
\(\Leftrightarrow t^2=10\)
Xét 2 trường hợp :
TH1:
t\(=\sqrt{10}\)
\(\Leftrightarrow x^2+10x+20=\sqrt{10}\)
\(\Leftrightarrow\left(x^2+10x+25\right)-5=\sqrt{10}\)
\(\Leftrightarrow\left(x+5\right)^2=\sqrt{10}+5\)
\(\Leftrightarrow\orbr{\begin{cases}x+5=\sqrt{\sqrt{10}+5}\\x+5=-\sqrt{\sqrt{10}+5}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\sqrt{\sqrt{10}+5}-5\\x=-\sqrt{\sqrt{10}+5}-5\end{cases}}\)
TH2:
\(t=-\sqrt{10}\)
\(\Leftrightarrow\left(x+5\right)^2-5=-\sqrt{10}\)
\(\Leftrightarrow\left(x+5\right)^2=-\sqrt{10}+5\)
\(\Leftrightarrow\orbr{\begin{cases}x+5=\sqrt{5-\sqrt{10}}\\x+5=-\sqrt{5-10}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\sqrt{5-\sqrt{10}}-5\\x=-\sqrt{5-\sqrt{10}}-5\end{cases}}\)