Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)\(6x^2-20x+6=0\)
<=>\(6x^2-18x-2x+6=0\)
<=>6x(x-3)-2(x-3)=0
<=>(6x-2)(x-3)=0
<=>6x-2=0
hoặc x-3=0
<=>x=\(\frac{1}{3}\)
hoặc x=3
Vậy...
2)\(8x^2+10x-3=0\)
=>\(8x^2-2x+12x-3=0\)
<=>2x(4x-1)+3(4x-1)=0
<=>(2x+3)(4x-1)=0
<=>2x+3=0<=>x=\(\frac{3}{2}\)
hoặc 4x-1=0<=>x=\(\frac{1}{4}\)
Vậy ........
3)Phương trình tương đương: \(4x^2-2x+10x-5=0\)
<=> 2x(2x-1)+5(2x-1)=0
<=> (2x+5)(2x-1)=0
Giải ra các trường hợp là xong
4)Phương trình tương đương:\(x^2-10x+25-1=0\)
<=>\(\left(x-5\right)^2-1^2=0\)
<=>(x-5-1)(x-5+1)=0
<=>(x-6)(x-4)=0 Giải các TH nữa là xong
5)\(x^2-5x-24\)=0
<=>\(x^2-8x+3x-24=0\)
<=>x(x-8)+3(x-8)=0
<=>(x+3)(x-8)=0
Giải ra các nghiệm nữa là xong
6)Phương trình tương đương :\(x^4+6x^2+9-9x^2=0\)
<=> \(\left(x^2+3\right)^2-\left(3x\right)^2\)
<=> \(\left(x^2+3x+3\right)\left(x^2-3x+3\right)\)=0
Đến đây tự làm nhé
7)Phương trình tương đương :\(4x^4-12x^2+9-8=0\)
<=>\(\left(2x-3\right)^2-\sqrt{8}^2\)=0
<=>(2x-3-\(\sqrt{8}\))\(\left(2x-3+\sqrt{8}\right)\)=0
Đến đây dễ rồi
câu 1 là : Tìm x để A khác 0 \(A=\frac{-4x^2}{3-x}\)
Gợi ý:
a) Đặt \(x^2+3x+1=a\)
b) \(\left(x^2+8x+7\right)\left(x+3\right)\left(x+5\right)+15\)
\(=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)
Đặt \(x^2+8x+11=a\)
c) \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)
Đặt \(x^2+7x+11=a\)
d) \(\left(4x+1\right)\left(12x-1\right)\left(3x+2\right)\left(x+1\right)-4=\left(12x^2+11x+2\right)\left(12x^2+11x-1\right)-4\)
Đặt \(12x^2+11x-1=a\)
Câu hỏi của Nguyễn Tấn Phát - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo câu e nhé!
Bài 2:
\(g\left(x\right)=x^2+9x+20=\left(x+4\right)\left(x+5\right)\)
Để \(f\left(x\right)=x^3+ax^2+bx-60\) chia hết cho \(g\left(x\right)=\left(x+4\right)\left(x+5\right)\) thì
\(\left\{{}\begin{matrix}f\left(-4\right)=0\\f\left(-5\right)=0\end{matrix}\right.\)
Với \(f\left(-4\right)\) ta có:
\(f\left(-4\right)=-64+16a-4b-60=0\)
\(\Leftrightarrow16a-4b=124\)
(1)
Với \(f\left(-5\right)\) , ta có:
\(f\left(-5\right)=-125+25a-5b-60=0\)
\(\Leftrightarrow25a-5b=185\)(2)
Từ (1) và (2) , ta có:
\(\left\{{}\begin{matrix}16a-4b=124\\25a-5b=185\end{matrix}\right.\)
Giải hệ ta được :
\(\left\{{}\begin{matrix}a=6\\b=-7\end{matrix}\right.\)
p/s: Lm xog chả bk mk lm cái zề nữa
T.Thùy Ninh
Theo bài toán:
\(x^2+5x+4=x^2+x+4x+4=\left(x+1\right)\left(x+4\right)\)\(x^5+x^4-15x^3-5x^2+34x+24\)
\(=x^5+x^4-15x^3-15x^2+10x^2+10x^2+24x+24\)\(=x^4\left(x+1\right)-15x^2\left(x+1\right)+10x\left(x+1\right)+24\left(x+1\right)\)\(=\left(x+1\right)\left(x^4-15x^2+10x+24\right)\)
Ta có:
\(\dfrac{\left(x^5+x^4-15x^3-5x^2+34x+24\right)}{x^2+5x+4}\)
\(=\dfrac{\left(x+1\right)\left(x^4+15x^2+10x+24\right)}{\left(x+1\right)\left(x+4\right)}=\dfrac{x^4+15x^2+10+24}{x+4}\) \(=\dfrac{x^4+4x^3-4x^3-16x^2+x^2+4x+6x+24}{x+4}\) \(=\dfrac{x^3\left(x+4\right)-4x^2\left(x+4\right)+x\left(x+4\right)+6\left(x+4\right)}{x+4}\)
\(=\dfrac{\left(x+4\right)\left(x^3-4x^2+x+6\right)}{x+4}\)
\(=x^3-4x^2+x+6\)
p/s : ko bk đúng kh nữa . Định chia theo cách bình thường nhưng lười lấy giấy ra rồi chụp ảnh nên lm theo cách này. Sai thôg cảm nha
a, x3 +x2 -12x=0
\(\Leftrightarrow\)x3 +4x2-3x2-12x=0
\(\Leftrightarrow\) x2(x+4)-3x(x+4)=0
\(\Leftrightarrow\) (x2-3x)(x+4)=0
\(\Leftrightarrow\)x(x-3)(x+4)=0
\(\left[\begin{matrix}x=0\\x-3=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[\left[\begin{matrix}x=0\\x=3\\x=-4\end{matrix}\right.\)
Vậy S\(=\)\(\left\{0;3;-4\right\}\)
b.x3-4x2-x+4=0
\(\Leftrightarrow\)x2(x-4)-(x-4)=0
\(\Leftrightarrow\) (x2 -1)(x-4)=0
\(\Leftrightarrow\)(x-1)(x+1)(x-4)=0
\(\left[\begin{matrix}x+1=0\\x-1=0\\x-4=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=1\\x=-1\\x=4\end{matrix}\right.\)
Vậy S=\(\left\{1;-1;4\right\}\)
Tập xác định của hàm số
2
Giao điểm với trục hoành (OX)
3
Giao điểm với trục tung (OY)
4
Giới hạn hàm số tại vô cực
5
Khảo sát tính chẵn lẻ của hàm số
6
Giá trị của đạo hàm
7
Đạo hàm bằng 0 tại
8
Hàm số tăng trên
9
Hàm số giảm trên
10
Giá trị nhỏ nhất của hàm số
11
Giá trị lớn nhất của hàm số
Bạn dưới đang giải theo cách làm THPT phải không? Cho mình hỏi \(\infty\)là denta à?
a, 8/x-8 + 11/x-11 = 9/x-9 + 10/ x-10
b, x/x-3 - x/x-5 = x/x-4 - x/x-6
c, 4/x^2-3x+2 - 3/2x^2-6x+1 +1 = 0
d, 1/x-1 + 2/ x-2 + 3/x-3 = 6/x-6
e, 2/2x+1 - 3/2x-1 = 4/4x^2-1
f, 2x/x+1 + 18/x^2+2x-3 = 2x-5 /x+3
g, 1/x-1 + 2x^2 -5/x^3 -1 = 4/ x^2 +x+1
`(x + 2)(x + 3)(x + 4)(x + 5) - 24 = 0`
`[(x + 2)(x + 5)] [(x + 3)(x + 4)] - 24 = 0`
`(x^2 + 7x + 10)(x^2 + 7x + 12) - 24 = 0`
`(x^2 + 7x + 11 - 1)(x^2 + 7x + 11 + 1) - 24 = 0`
`(x^2 + 7x + 11) - 1 - 24 = 0`
`(x^2 + 7x + 11) - 25 = 0`
`(x^2 + 7x + 11 - 5)(x^2 + 7x + 11 + 5) = 0`
`(x^2 + 7x + 6)(x^2 + 7x + 16) = 0`
`=> x^2 + 7x + 6 = 0` hoặc `x^2 + 7x + 16 = 0`
Ta có: `x^2 + 7x + 16 = x^2 + 7x + 49/4 + 15/4 = (x + 7/2)^2 + 15/4`
Vì \(\left(x+\dfrac{7}{2}\right)^2\ge0\forall x\) nên \(\left(x+\dfrac{7}{2}\right)^2+\dfrac{15}{4}>0\)
`=> x^2 + 7x + 6 = 0`
`<=> x^2 + x + 6x + 6 = 0`
`<=> x(x + 1) + 6(x + 1) = 0`
`<=> (x + 1)(x + 6) = 0`
`<=> x + 1 = 0` hoặc `x + 6 = 0`
`<=> x = -1` hoặc `x = -6`
\(\Leftrightarrow\left(x^2+7x+12\right)\left(x^2+7x+10\right)-24=0\)
\(\Leftrightarrow\left(x^2+7x\right)^2+22\left(x^2+7x\right)+96=0\)
\(\Leftrightarrow\left(x^2+7x+6\right)\left(x^2+7x+16\right)=0\)
=>(x+1)(x+6)=0
=>x=-1 hoặc x=-6