
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) => M = -(X2+8X-5)
<=> M=-( X2+2xXx4+42-42-5)
<=> M=-[(X+4)2-21]
=> M=21-(x+4)2 =< 21
vậy MAX M= 21 khi X+4 =0 => x=-4
các bài còn lại tương tự ~~~
a, \(M=-x^2-8x+5\)
\(=-\left(x^2+8x-5\right)\)
\(=-\left(x^2+2.x.4+16-21\right)\)
\(=-\left(x+4\right)^2+21\)
\(\Rightarrow M\le21\)
Dấu ''='' xảy ra \(\Leftrightarrow x+4=0\Leftrightarrow x=-4\)
Vậy giá trị lớn nhất của M là 21 khi x = -4
b, \(N=-3x\left(x+3\right)-7\)
\(=-3x^2-9x-7\)
\(=-3\left(x^2+3x+\frac{7}{3}\right)\)
\(=-3\left(x^2+2.x.\frac{3}{2}+\frac{9}{4}+\frac{1}{12}\right)\)
\(=-3\left(x+\frac{3}{2}\right)^2-\frac{1}{4}\)
\(\Rightarrow N\le\frac{-1}{4}\)
Dấu ''='' xảy ra \(\Leftrightarrow x+\frac{3}{2}=0\Leftrightarrow x=\frac{-3}{2}\)
Vậy giá trị lớn nhất của N là \(\frac{-1}{4}\Leftrightarrow x=\frac{-3}{2}\)
c,\(P=4x-x^2+3\)
\(=-\left(x^2-4x-3\right)\)
\(=-\left(x^2-2.x.2+4-7\right)\)
\(=-\left(x-2\right)^2+7\)
\(\Rightarrow P\le7\)
Dấu ''='' xảy ra \(\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Vậy giá trị lớn nhất của P là 7 khi x = 2
d, \(E=9x-3x^2\)
\(=-3\left(x^2-3x\right)\)
\(=-3\left(x^2-2.x.\frac{3}{2}+\frac{9}{4}-\frac{9}{4}\right)\)
\(=-3\left(x-\frac{3}{2}\right)^2+\frac{27}{4}\)
\(\Rightarrow E\le\frac{27}{4}\)
Dấu ''='' xảy ra \(\Leftrightarrow x-\frac{3}{2}=0\Leftrightarrow x=\frac{3}{2}\)
Vậy giá trị lớn nhất của E là \(\frac{27}{4}\Leftrightarrow x=\frac{3}{2}\)

a) P=\(\frac{x^2+x}{x^2-2x+1}:\left(\frac{x+1}{x}-\frac{1}{1-x}+\frac{2-x^2}{x^2-x}\right)\left(x\ne\pm1;x\ne0\right)\)
P=\(\frac{x\left(x+1\right)}{\left(x-1\right)^2}:\left(\frac{x+1}{x}+\frac{1}{x-1}+\frac{2-x^2}{x\left(x-1\right)}\right)\)
P=\(\frac{x\left(x+1\right)}{\left(x-1\right)^2}:\left(\frac{\left(x+1\right)\left(x-1\right)}{x\left(x-1\right)}+\frac{x}{x\left(x-1\right)}+\frac{2-x^2}{x\left(x-1\right)}\right)\)
P=\(\frac{x\left(x+1\right)}{\left(x-1\right)^2}:\frac{x^2-1+x+2-x^2}{x\left(x-1\right)}\)
P=\(\frac{x\left(x+1\right)}{\left(x-1\right)^2}\cdot\frac{x\left(x-1\right)}{x+1}=\frac{x\left(x+1\right)x\left(x-1\right)}{\left(x-1\right)^2\left(x+1\right)}=\frac{x^2}{x-1}\)
vậy P=\(\frac{x^2}{x-1}\left(x\ne\pm1;x\ne0\right)\)
b) ta có \(P=\frac{x^2}{x-1}\left(x\ne\pm1;x\ne0\right)\)
để P<1 => \(\frac{x^2}{x-1}< 1\)
\(\Leftrightarrow\frac{x^2}{x-1}-1< 0\Leftrightarrow\frac{x^2-x+1}{x-1}< 0\Leftrightarrow\frac{\left(x-\frac{1}{2}\right)^2+\frac{3}{4}}{x-1}< 0\)
thấy \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)
vậy để P-1<0 thì x-1<0
=> x<1. kết hợp với điều kiện ta được \(\hept{\begin{cases}x< 1\\x\ne0\\x\ne-1\end{cases}}\)thì P<1

=> x + 2y = 0 hoặc x2 - 2xy + 4y2 = 0
còn lại thì e bó tay . canh
(x+2y)(x2-2xy+4y2)=0
<=>x3+(2y)3=0
<=>x3+8y3=0 (1)
(x-2y)(x2+2xy+4y2)=0
<=>x3-(2y)3=0
<=>x3-8y3=0 (2)
từ (1) và (2)=>x3+8y3-x3+8y3=0
<=>16y3=0
<=>y=0
thay y=0 vào (1) ta đc:
x3-0=0
<=>x3=0
<=>x=0

C=Ix2-x+1I + Ix2-x-2l = l (x-1/2)2+3/4 l + l (x-1/2)2+9/4 l
vì (x-1/2)2 lớn hơn hoặc bằng 0 nên suy ra c lớn hơn hoặc bằng 3/4+9/4=3. vậy min C=3 khi và chỉ khi x=1/2

(x2 + x)2 - 2(x2 + x) - 15
= [(x2 + x)2 - 2(x2 + x) + 1] - 16
= (x2 + x + 1)2 - 42
= (x2 + x + 5)(x2 + x - 3)
( x2 + x )2 - 2 ( x2 + x ) - 15
Đặt t = x2 + x , đa thức trở thành
t2 - 2t - 15
= ( t2 + 3t ) - ( 5t + 15 )
= t ( t + 3 ) - 5 ( t + 3 )
= ( t - 5 ) ( t + 3 )
= ( x2 + x - 5 ) ( x2 + x + 3 )

Phân tích đa thức thành nhân tử:
\(6xy+5x-5y-3x^2-3y^2\)
\(=-3x^2+6xy-3y^2+5x-5y\)
\(=-3\left(x^2-2xy+y^2\right)+5\left(x-y\right)\)
\(=-3\left(x-y\right)^2+5\left(x-y\right)\)
\(=\left(x-y\right)\left[-3\left(x-y\right)+5\right]\)
\(=\left(x-y\right)\left(-3x+3y+5\right)\)
Thực hiện phép tính:
a)\(\left(x^2+x-3\right)\left(x^2-x+3\right)\)
\(=\left[x^2+\left(x-3\right)\right]\left[x^2-\left(x-3\right)\right]\)
\(=\left(x^2\right)^2-\left(x-3\right)^2\)
\(=x^4-\left(x^2-6x+9\right)\)
\(=x^4-x^2+6x-9\)
b)\(\left(5x-1\right)\left(x+3\right)-\left(x-2\right)\left(5x-4\right)\)
\(=\left(5x^2+15x-x-3\right)-\left(5x^2-4x-10x+8\right)\)
\(=5x^2+15x-x-3-5x^2+4x+10x-8\)
\(=28x-11\)

- \(\Leftrightarrow\left(a^2+4\right)x=3a^2-48\Leftrightarrow x=\frac{3a^2-48}{a^2+4}\)
- \(\Leftrightarrow\left(a^2+5\right)x=a^2\Leftrightarrow x=\frac{a^2}{a^2+5}\)

a) = x3 + 9x2 + 27x + 27 - 9x3 -6x2 - x + 8x3 +1 -3x2 =54
26x +28 = 54
26x = 54-28 = 26
x = 1
b) = x3 - 9x2 + 27x -27 - x3 +27 +6x2 + 12x + 6 +3x2 = -33
39x +6 = -33
39x = -33-6 = -39
x = -1
Khai triển ?
Ta có: \(\left(x^2+x+2\right)\left(x^2-x-2\right)\)
\(=\left[x^2+\left(x+2\right)\right]\left[x^2-\left(x+2\right)\right]\)
\(=x^4-\left(x+2\right)^2\)
\(=x^4-x^2-4x-4\)