Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1:
\(\dfrac{x-10}{1994}+\dfrac{x-8}{1996}+\dfrac{x-6}{1998}=\dfrac{x-2002}{2}+\dfrac{x-2000}{4}+\dfrac{x-1998}{6}\)
<=>\(\left(\dfrac{x-10}{1994}-1\right)+\left(\dfrac{x-8}{1996}+-1\right)+\left(\dfrac{x-6}{1998}-1\right)=\left(\dfrac{x-2002}{2}-1\right)+\left(\dfrac{x-2000}{4}-1\right)+\left(\dfrac{x-1998}{6}-1\right)\)
<=>\(\dfrac{x-2004}{1994}+\dfrac{x-2004}{1996}+\dfrac{x-2004}{1998}=\dfrac{x-2004}{2}+\dfrac{x-2004}{4}+\dfrac{x-2004}{6}\)
<=>\(\dfrac{x-2004}{1994}+\dfrac{x-2004}{1996}+\dfrac{x-2004}{1998}-\dfrac{x-2004}{2}-\dfrac{x-2004}{4}-\dfrac{x-2004}{6}=0\)
<=>(x-2004)\(\left(\dfrac{1}{1994}+\dfrac{1}{1996}+\dfrac{1}{1998}-\dfrac{1}{2}-\dfrac{1}{4}-\dfrac{1}{6}\right)\)
vì 1/1994+1/1996+1/1998-1/2-1/4-1/6 khác 0
nên x-2004=0=>x=2004
vyaj.......
bài 2:
\(\dfrac{x-85}{15}+\dfrac{x-74}{13}+\dfrac{x-67}{11}+\dfrac{x-64}{9}=10\)
<=>\(\left(\dfrac{x-85}{15}-1\right)+\left(\dfrac{x-74}{13}-2\right)+\left(\dfrac{x-67}{11}-3\right)+\left(\dfrac{x-64}{9}-4\right)=0\)
<=>\(\dfrac{x-100}{15}+\dfrac{x-100}{13}+\dfrac{x-100}{11}+\dfrac{x-100}{9}=0\)
<=>\(\left(x-100\right)\left(\dfrac{1}{15}+\dfrac{1}{13}+\dfrac{1}{11}+\dfrac{1}{9}\right)=0\)
vì 1/15+1/13+1/11+1/9 khác 0
=>x-100=0<=>x=100
a.
$4(x+5)(x+6)(x+10)(x+12)=3x^2$
$4[(x+5)(x+12)][(x+6)(x+10)]=3x^2$
$4(x^2+17x+60)(x^2+16x+60)=3x^2$
Đặt $x^2+16x+60=a$ thì pt trở thành:
$4(a+x)a=3x^2$
$4a^2+4ax-3x^2=0$
$4a^2-2ax+6ax-3x^2=0$
$2a(2a-x)+3x(2a-x)=0$
$(2a-x)(2a+3x)=0$
Nếu $2a-x=0\Leftrightarrow 2(x^2+16x+60)-x=0$
$\Leftrightarrow 2x^2+31x+120=0\Rightarrow x=\frac{-15}{2}$ hoặc $x=-8$
Nếu $2a+3x=0\Leftrightarrow 2(x^2+16x+60)+3x=0$
$\Leftrightarrow 2x^2+35x+120=0\Rightarrow x=\frac{-35\pm \sqrt{265}}{4}$
b.
$(x+1)(x+2)(x+3)(x+6)=120x^2$
$[(x+1)(x+6)][(x+2)(x+3)]=120x^2$
$(x^2+7x+6)(x^2+5x+6)=120x^2$
Đặt $x^2+6=a$ thì pt trở thành:
$(a+7x)(a+5x)=120x^2$
$\Leftrightarrow a^2+12ax-85x^2=0$
$\Leftrightarrow a^2-5ax+17ax-85x^2=0$
$\Leftrightarrow a(a-5x)+17x(a-5x)=0$
$\Leftrightarrow (a-5x)(a+17x)=0$
Nếu $a-5x=0\Leftrightarrow x^2+6-5x=0$
$\Leftrightarrow (x-2)(x-3)=0\Rightarrow x=2$ hoặc $x=3$
Nếu $a+17x=0\Leftrightarrow x^2+17x+6=0$
$\Rightarrow x=\frac{-17\pm \sqrt{265}}{2}$
Vậy.........
điều kiện xác định \(x\ne0\)
ta có : \(\dfrac{x+1}{x^2+2x+4}-\dfrac{x-2}{x^2-2x+4}=\dfrac{6}{x\left(x^4+4x^2+16\right)}\)
\(\Leftrightarrow\dfrac{\left(x+1\right)\left(x^2-2x+4\right)-\left(x-2\right)\left(x^2+2x+4\right)}{\left(x^2+2x+4\right)\left(x^2-2x+4\right)}=\dfrac{6}{x\left(x^4+4x^2+16\right)}\)
\(\Leftrightarrow\dfrac{x^3-2x^2+4x+x^2-2x+4-\left(x^3+2x^2+4x-2x^2-4x-8\right)}{x^4-2x^3+4x^2+2x^3-4x^2+8x+4x^2-8x+16}=\dfrac{6}{x\left(x^4+4x^2+16\right)}\) \(\Leftrightarrow\dfrac{x^3-2x^2+4x+x^2-2x+4-x^3-2x^2-4x+2x^2+4x+8}{x^4-2x^3+4x^2+2x^3-4x^2+8x+4x^2-8x+16}=\dfrac{6}{x\left(x^4+4x^2+16\right)}\) \(\Leftrightarrow\dfrac{-x^2+2x+12}{x^4+4x^2+16}=\dfrac{6}{x\left(x^4+4x^2+16\right)}\)\(\Leftrightarrow-x^2+2x+12=\dfrac{6}{x}\Leftrightarrow x\left(-x^2+2x+12\right)=6\)
\(\Leftrightarrow-x^3+2x^2+12x=6\Leftrightarrow-x^3+2x^2+12x-6=0\)
tới đây bn bấm máy tính nha
\(4.\left(x+1\right)^2-9.\left(x-1\right)^2=0\)
\(\Leftrightarrow4.\left(x^2+2x+1\right)-9.\left(x^2-2x+1\right)=0\)
\(\Leftrightarrow4x^2+8x+4-9x^2+18x-9=0\)
\(\Leftrightarrow\left(4x^2+8x+4\right)-\left(9x^2-18x+9\right)=0\)
\(\Leftrightarrow\left(2x+2\right)^2-\left(3x-3\right)^2=0\)
\(\Leftrightarrow\left[2x+2-\left(3x-3\right)\right].\left[2x+2+\left(3x-3\right)\right]=0\)
\(\Leftrightarrow\left(2x+2-3x+3\right).\left(2x+2+3x-3\right)=0\)
\(\Leftrightarrow\left(5-x\right).\left(5x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}5-x=0\\5x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\5x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\frac{1}{5}\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{5;\frac{1}{5}\right\}.\)
Chúc bạn học tốt!
\(4\left(x+1\right)^2-9\left(x-1\right)^2=0\)
\(\Leftrightarrow4\left(x^2+2x+1\right)-9\left(x^2-2x+1\right)=0\)
\(\Leftrightarrow4x^2+8x+4-9x^2-18x-9=0\)
\(\Leftrightarrow-5x^2-10x-5=0\)
\(\Leftrightarrow-5\left(x^2+2x+1\right)=0\)
\(\Leftrightarrow-5\left(x+1\right)^2=0\)
\(\Leftrightarrow\left(x+1\right)^2=0\)
\(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
Vậy S = {1}
\(\begin{array}{l} {\left( {{x^2} + x} \right)^2} + 4\left( {{x^2} + x} \right) = 12\\ \Leftrightarrow {\left( {{x^2} + x} \right)^2} + 2\left( {{x^2} + x} \right).2 + {2^2} = 12 + 4\\ \Leftrightarrow {\left( {{x^2} + x + 2} \right)^2} = 16\\ \Leftrightarrow \left[ \begin{array}{l} {x^2} + x + 2 = 4\\ {x^2} + x + 2 = - 4 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} {x^2} + x - 2 = 0 \Leftrightarrow \left[ \begin{array}{l} x = 1\\ x = - 2 \end{array} \right.\\ {x^2} + x + 6 = 0\left( {VN} \right) \end{array} \right. \end{array}\)
b) \(x-\sqrt{2}+3.\left(x^2-2\right)=0\)
\(\Leftrightarrow\left(x-\sqrt{2}\right)+3.\left[x^2-\left(\sqrt{2}\right)^2\right]=0\)
\(\Leftrightarrow\left(x-\sqrt{2}\right)+3.\left(x-\sqrt{2}\right).\left(x+\sqrt{2}\right)=0\)
\(\Leftrightarrow\left(x-\sqrt{2}\right).\left(1+3+x+\sqrt{2}\right)=0\)
\(\Leftrightarrow\left(x-\sqrt{2}\right).\left(4+x+\sqrt{2}\right)=0\)
\(\Leftrightarrow\left(x-\sqrt{2}\right).\left(x+4+\sqrt{2}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\sqrt{2}=0\\x+4+\sqrt{2}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0+\sqrt{2}\\x=0-4-\sqrt{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2}\\x=-4-\sqrt{2}\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{\sqrt{2};-4-\sqrt{2}\right\}.\)
Chúc bạn học tốt!
a) Ta có: \(2x^4+3x^3-9x^2-3x+2\)
\(=2x^4-2x^3-2x^2+5x^3-5x^2-5x-2x^2+2x+2\)
\(=2x^2\left(x^2-x-1\right)+5x\left(x^2-x-1\right)-2\left(x^2-x-1\right)\)
\(=\left(x^2-x-1\right)\left(2x^2+5x-2\right)\)
\(\left(x^2+x\right)^2+4.\left(x^2+x\right)=12\)
\(\Leftrightarrow\left(x^2+x\right)^2+4.\left(x^2+x\right)-12=0\)
\(\Leftrightarrow\left(x^2+x\right).\left(x^2+x+4-12\right)=0\)
\(\Leftrightarrow\left(x^2+x\right).\left(x^2+x-8\right)=0\)
\(\Leftrightarrow x.\left(x+1\right).\left(x^2+x-8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+1=0\\x^2+x-8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=-3,372281323\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{0;-1;-3,372281323\right\}.\)
Chúc bạn học tốt!
Sai r bạn ơi. Thay x vào ko đúng . Mình cx đc như thế này nên mới hỏi ý